

DRAINAGE DESIGN MANAGEMENT SYSTEM FOR WINDOWS VERSION 5.3.0

TUTORIAL # 11 TOTAL SCOUR ANALYSIS FOR BRIDGE PIERS

KVL Consultants, Inc.

TOTAL SCOUR ANALYSIS FOR BRIDGE PIERS

TABLE OF CONTENTS

No. Section

Page

1.0	Pro	DBLEM STATEMENT 1			
2.0	STEP-BY-STEP PROCEDURES				
	2.1	Step 1 -	TEP 1 - ESTABLISH A NEW PROJECT AND DEFAULTS SET-UP		
	2.2	STEP 2 - PREPARE THE CROSS SECTION HYDRAULICS			
		2.2.1	IMPORT THE BRIDGE CROSS SECTION DATA	6	
		2.2.2	IMPORT THE STUDY REACH CROSS SECTION DATA	9	
		2.2.3	IMPORT THE SUPPLY REACH CROSS SECTION DATA	12	
	2.3	Step 3 -	CALCULATE TOTAL SCOUR	15	
		2.2.4	SET UP TOTAL SCOUR BASIC DATA	15	
		2.2.5	CALCULATE THE LONG TERM SCOUR	18	
		2.2.6	CALCULATE THE GENERAL SCOUR	19	
		2.2.7	CALCULATE THE LOCAL SCOUR	21	
		2.2.8	CALCULATE THE LOW FLOW SCOUR	23	
		2.2.9	CALCULATE THE TOTAL SCOUR	24	
	2.4	Step 4 -	REPORT AND DOCUMENT THE RESULTS	25	

1.0 PROBLEM STATEMENT

To estimate the total scour depth for a bridge pier (use *"Equilibrium Slope for Sediment-Laden Flow"* method for long-term scour, use *"Neil"* method for general scour including a moderate bend, and use the local scour at the piers) with the following given conditions:

- The Cross Section "BRIDGECROSSSECTION"
 - Parameters for Hydraulics and Geometry:

• Design Flow Rate (cfs):	3200
• Dominant Flow Rates (cfs):	800
 Channel Slope for Design Flow (ft/ft): 	0.015
 Channel Slope for Dominant Flow (ft/ft): 	0.015
 Channel Manning's n for Design Flow: 	0.035
 LOB Manning's n for Design Flow: 	0.035
ROB Manning's n for Design Flow:	0.035
 Channel Manning's n for Dominant Flow: 	0.030
 LOB Manning's n for Dominant Flow: 	0.030
ROB Manning's n for Dominant Flow:	0.030

• The geometric data (station and elevation) of the cross section:

Station (X)	Elevation (Y)	Notes
100	100	
106	98	
131	98	Left Bank Station
141	95	
166	95	
176	98	Right Bank Station
201	98	
207	100	

- The Cross Section "STUDYREACHCROSSSECTION"
 - > Parameters for Hydraulics and Geometry:
 - Design Flow Rate (cfs): 3200
 - Dominant Flow Rates (cfs): 800
 - Channel Slope for Design Flow (ft/ft): 0.015
 - Channel Slope for Dominant Flow (ft/ft): 0.015

- Channel Manning's n for Design Flow: 0.035
- LOB Manning's n for Design Flow: 0.035
- ROB Manning's n for Design Flow: 0.035
- Channel Manning's n for Dominant Flow: 0.030
- LOB Manning's n for Dominant Flow: 0.030
- **ROB Manning's n** for **Dominant Flow:** 0.030
- Length to Pivot Point (ft): 800
- The geometric data (station and elevation) of the cross section:

Station (X)	Elevation (Y)	Notes
100	100	
106	98	
156	98	Left Bank Station
166	95	
191	95	
201	98	Right Bank Station
251	98	
257	100	

- The Cross Section "SUPPLYREACHCROSSSECTION"
 - > Parameters for Hydraulics and Geometry:
 - Design Flow Rate (cfs): 3200
 - Dominant Flow Rates (cfs): 800
 - Channel Slope for Design Flow (ft/ft): 0.010
 - Channel Slope for Dominant Flow (ft/ft): 0.010
 - Channel Manning's n for Design Flow: 0.035
 - LOB Manning's n for Design Flow: 0.035
 - ROB Manning's n for Design Flow: 0.035
 - Channel Manning's n for Dominant Flow: 0.030
 - LOB Manning's n for Dominant Flow: 0.030
 - ROB Manning's n for Dominant Flow: 0.030
 - The geometric data (station and elevation) of the cross section:

Station (X)	Elevation (Y)	Notes
100	100	
106	98	
181	98	Left Bank Station

Station (X)	Elevation (Y)	Notes
191	95	
216	95	
226	98	Right Bank Station
301	98	
307	100	

Parameters for the Long Term Scour :

•	rarameters for the Long renn S cour :	
	• D50 (mm) for Study Reach:	1.50
	 D84 (mm) for Study Reach: 	10.00
	• D16 (mm) for Study Reach:	0.50
	• D50 (mm) for Supply Reach:	1.50
	• D84 (mm) for Supply Reach:	12.00
	• D16 (mm) for Supply Reach:	1.00
*	Parameters for the General Scour:	
	• Exponent m:	Coarse Gravel (0.85)
	• Bend Factor, z:	Moderate Bend (0.60)
	• D50 (mm):	1.50
	 Bend Angle (Degrees): 	45.00
*	Parameters for the Low Flow Scour:	
	• Low Flow Rate (cfs):	100.00
	Channel Material	Medium Sand
*	Parameters for the Local Scour:	
	• Pier Width, a (ft):	2.50
	 Pier Length, L (ft): 	60.00
	 Angle of Attack (Degrees): 	30.00
	• D50 (mm):	1.50
	• D95 (mm):	20.00
	• Nose Shape Factor, K1:	1.0 (Round Nose)
	• Bed Condition Factor, K3:	1.2 (Medium Dune)
Step	-by-Step Procedures	

- Step 1: Establish a New Project and Defaults Set-up
- Step 2: Prepare the Cross Section Hydraulics
- Step 3: Import Cross Section and Hydraulic Data

2.0

Step 4: Calculate Total Scour at Bridge Piers

- Step 4.1: Set up Total Scour Basic Data
- Step 4.2: Calculate the Long Term Scour
- Step 4.3: Calculate the General Scour
- Step 4.4: Calculate the Local Scour
- Step 4.5: Calculate the Low Flow Scour
- Step 4.6: Calculate the Total Scour
- Step 5: Report and Document the Results

2.1 Step 1 - Establish a New Project and Defaults Set-up

(a) Click the **DDMSW** icon on the Desktop or Program menu to launch the **DDMSW**. Click the **OK** button to accept the software disclaimer as shown in the following figure.

After the **DDMSW** is launched, the **SELECT PROJECT** window is automatically opened as shown in the following figure.

Li	st		De <u>t</u> ails
Look for			
Reference 🔶	Date	ID	Title
BANKPROTECTIONFCD	01/01/2012	00035	River Mechanics Example - Bank Protection
BRIDGEPIER1	02/24/2016	00057	Tutorial #2 - River Mechanics
BRIDGEPIERFCD	03/01/2016	00133	River Mechanics Example - Bridge Pier
EXAMPLE1	01/01/2010	00037	Clark, Green Ampt, Single, 6 Hour
EXAMPLE2	02/29/2016	00038	S-Graph, Green-Ampt, Single, 24 Hour
EXAMPLE3	01/01/2010	00039	S-Graph, Green-Ampt, Multiple, 6 Hour
EXAMPLE4	01/01/2010	00040	Clark, Init and Uniform, Single, 6 Hour
KVLEXAMPLE1	02/29/2016	00041	Example 1 HEC-1 tutorial project
KVLEXAMPLE10	01/10/2014	00042	HEC-1 Tutorial - Import HEC-1 File
KVLEXAMPLE11	01/10/2014	00043	FCDMC Hydraulics Manual Design Example 4.6
KVLEXAMPLE12	02/25/2016	00044	Street Drainage Example
KVLEXAMPLE2	02/29/2016	00045	Example 2 using Shape files and NOAA 14
KVLEXAMPLE3	01/01/2011	00046	Example 3 Rational Method tutorial project
KVLEXAMPLE5	02/25/2016	00047	HEC-1 Tutorial - Clark Unit Hydrograph
KVLEXAMPLE5A	03/02/2016	00061	HEC-1 Tutorial - Clark Unit Hydrograph
KVLEXAMPLE6	03/01/2016	00130	HEC-1 Tutorial - S-Graph Unit Hydrograph
4	•	•	

- (b) Click the Add button on the SELECT PROJECT window to start a new project (Or File → New Project → Add).
- (c) Select **River Mechanics** checkbox and click the **OK** button on the **NEW PROJECT OPTIONS** form.
- (d) Type "BRIDGEPIER1" into the Reference textbox. This is the name of this newly created project. Users can choose any name for the Reference textbox as long as it does not exist in the current DDMSW project database.
- (e) Type into the **Title** textbox a brief descriptive title for this project. *(Optional)*
- (f) Type into the Location textbox the location of this project. (Optional)
- (g) Type into the Agency textbox the agency or company name. (Optional)
- (h) Check River Mechanics Only checkbox for this project.
- (i) Type a detailed description of this project into the comment area under the **Project Reference** frame. *(Optional)*
- (j) Set the Modification Date using today's date by clicking on the Calendar icon.
- (k) Click the **Save** button to save the entered data.
- (I) Click the **OK** button on the **SELECT PROJECT** window, and click the **OK** button on the pop-up message box. The following figure shows what the window looks like.

Select Proje	ct	
	List	De <u>t</u> ails
□ Project R	Reference	Project Defaults
Project ID	00057 Reference BRIDGEPIER1	
Title	Total Scour for Bridge Pier Tutorial	Soils FCDMC
Location	Maricopa County, Arizona	Land Use FCDMC
Agency	Flood Control District of Maricopa County	
	River Mechanics Only	
	torial project that provides a step-by-step instruct W to calculate total scour for bridge piers.	ion on how to
Modificatio	n Date 03/02/2016	P <u>r</u> int <u>D</u> elete <u>A</u> dd <u>O</u> K

Note: the **Project ID** "00057" in the above figure is the unique database record identifier for the project, which is automatically generated by the program when a new project is created. When users create a new project, the **Project ID** of the new project will not be the same as the **Project ID** shown in the above figure.

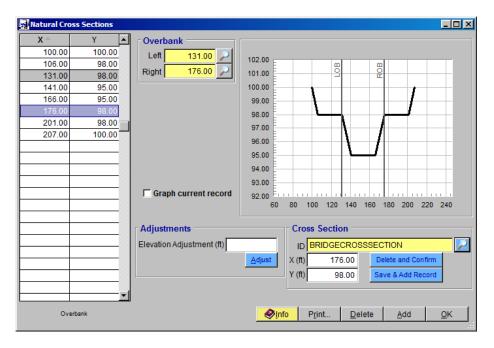
2.2 Step 2 - Prepare the Cross Section Hydraulics

All the three (3) cross section data that will be used for this tutorial will be imported from another project. These cross section data are:

•	Bridge Cross Section Data	"BRIDGECROSSSECTION"
•	Study Reach Cross Section Data	"STUDYREACHROSSSECTION"
•	Supply Reach Cross Section Data	"SUPPLYREACHCROSSSECTION"

2.2.1 Import the Bridge Cross Section Data

(a) To import the first cross section data (Bridge Cross Section Data), open the IMPORT CROSS SECTIONS FROM ANOTHER PROJECT form (River Mechanics → Import Cross Sections from Another Project). Use the following data on the form.


•	Import Project Reference:	PROJECTXSECTIONS
•	Option:	Specific Cross section
•	Import Cross Section ID:	BRIDGECROSSSECTION

Import Cross Sections From Another Project						
Import Project Reference	PROJECTXSECTIONS	\sim				
Option	Specific Cross Section					
Import Cross Section ID	BRIDGECROSSSECTION	\sim				
	Import	<u>о</u> к				

(b) Once the specified data have been selected, click the **Import** button. Select **Yes** to proceed, and hit **OK** to close the **IMPORT CROSS SECTION FROM ANOTHER PROJECT** form.

Question		\times
?	This will import Cross Section BRIDGECROSSSECTION from PROJECTXSECTIONS to the current project. - Data with the same ID will be overwritten. Do you want to continue?	
	Yes No	

(c) To check if the bridge cross section data has been successfully imported, open the NATURAL CROSS SECTIONS form (River Mechanics → Cross Section Geometry). For the Cross Section ID, select "BRIDGECROSSSECTION" by clicking the Selector button at the right side of the ID textbox.

Compare the geometric data on the **NATURAL CROSS SECTIONS** form against the tabulated data listed below. Make necessary data edits or adjustments on the form, if necessary. Click **OK** to close the form.

Station (X)	Elevation (Y)	Notes
100	100	
106	98	
131	98	Left Bank Station
141	95	
166	95	
176	98	Right Bank Station
201	98	
207	100	

(d) To check if the imported hydraulic data has all the correct Flow Rates (cfs), Slopes (ft/ft), and Manning's n (Channel, LOB, and ROB) data, open the CROSS SECTION HYDRAULICS form (River mechanics → Cross Section Hydraulics). Make sure that the Cross Section ID is set to "BRIDGECROSSSECTION" and compare the data on the form and the following data:

Cross Section ID:	BRIDGECROSSSECTION
 Design Flow Rate (cfs): 	3200
 Dominant Flow Rate (cfs): 	800
 Design Slope (ft/ft): 	0.015
 Dominant Slope (ft/ft): 	0.015
• Design Manning's n (Channel, LOB,	and ROB): 0.035
• Dominant Manning's n (Channel, LC	DB, and ROB): 0.030

Section ID	Er	ntire Cross S	ection					
	_ _	Source	Calculate D)ata	-	🔽 Design	Dominant	
BRIDGECROSSSECTION	,	Total Scour T		low Rate ((cfs)	3200	800	1
Cross Section ID 🔶		rotar occur ,		Slope	11	0.015000		-
BRIDGECROSSSECTION	Í				` ' ¦	0.035		Man's n
STUDYREACHCROSSSECTION				ig's n Char	i i			mansn
SUPPLYREACHCROSSSECTION	-		Ma	nning's n l	LOB	0.035	0.030	
			Ma	nning's n F	ROB	0.035	0.030	
	-		FI	ow Area (s	sq ft)	287.18	83.81	
			Wetteo	d Perimete	er (ft)	107.35	j 42.48	
			Ave	rage Width	h (ft)	59.66	33.37	
				Top Width	h (ft)	105.88	41.74	
			Hydr	aulic Dept	h (ft)	2.71	2.01	
			Normal or	Max Dept	h (ft)	4.81	2.51	
T. F.			١	/elocity (ft/s	sec)	11.14	9.55	
	*							
Info Print	Сору	Delete	Add	Graph	XSe	ection Deta	ail Update	<u>о</u> к

- (e) If everything checks out, click the **Update** button to update the hydraulic analysis results. On the SELECT OPTION form, select "This Record" and click **OK**. Hit **Yes** to continue.
- (f) Click **OK** to close the **RIVER MECHANICS CROSS SECTION HYDRAULICS** form.

2.2.2 Import the Study Reach Cross Section Data

(a) To import the second cross section data (Study Reach Cross Section Data), open the IMPORT CROSS SECTIONS FROM ANOTHER PROJECT form (River Mechanics **→** Import Cross Sections from Another Project). Use the following data on the form.

•	Import Project Reference:	PROJECTXSECTIONS
•	Option:	Specific Cross section
•	Import Cross Section ID:	STUDYREACHCROSSSECTION
	Import Cross Sections From Another Pro	ject
	Import Project Reference	PROJECTXSECTIONS
	Option	Specific Cross Section 🔻

Import Cross Section ID STUDYREACHCROSSSECTION

 \mathcal{O}

<u>o</u>ĸ

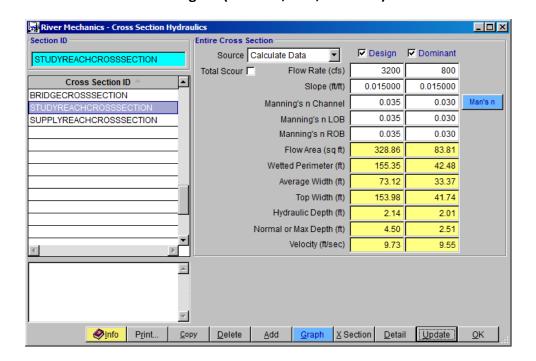
<u>I</u>mport

(b) Once the specified data have been selected, click the **Import** button. Select **Yes** to continue, and hit **OK** to close the **IMPORT CROSS SECTION FROM ANOTHER PROJECT** form.

Question		×
?	This will import Cross Section BRIDGECROSSSECTION from PROJECTXSECTIONS to the current project. - Data with the same ID will be overwritten. Do you want to continue?	
	Yes No	

(c) To check if the study reach cross section data has been successfully imported, open the NATURAL CROSS SECTIONS form (River Mechanics → Cross Section Geometry). For the Cross Section ID, select "STUDYREACHROSSSECTION" by clicking the Selector button at the right side of the ID textbox.

Natural Cross Sections		
X Y 100.00 100.00 106.00 98.00 156.00 98.00 166.00 95.00 191.00 95.00 201.00 98.00 257.00 100.00	Left 156.00 102.00 Right 201.00 101.00 99.00 99.00 97.00 96.00 95.00 95.00 94.00 93.00 92.00 101.00	
Overbank	Adjustments Cross So	JDYREACHCROSSSECTION


Compare the geometric data on the **NATURAL CROSS SECTIONS** form against the tabulated data listed below. Make necessary data edits or adjustments on the form, if necessary. Click **OK** to close the form.

Station (X)	Elevation (Y)	Notes
100	100	
106	98	

Station (X)	Elevation (Y)	Notes
156	98	Left Bank Station
166	95	
191	95	
201	98	Right Bank Station
251	98	
257	100	

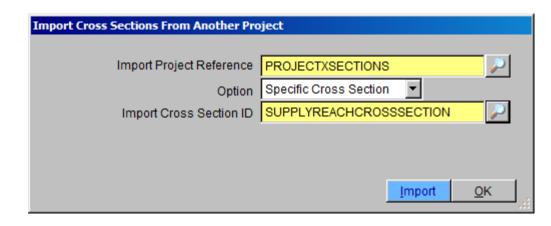
(d) To check if the imported hydraulic data has all the correct Flow Rates (cfs), Slopes (ft/ft), and Manning's n (Channel, LOB, and ROB) data, open the CROSS SECTION HYDRAULICS form (River mechanics → Cross Section Hydraulics). Make sure that the Cross Section ID is set to "STUDYREACHCROSSSECTION" and compare the data on the form and the following data:

Cross Section ID:	STUDYREACHCROSSSECTION
• Design Flow Rate (cfs):	3200
• Dominant Flow Rate (cfs):	800
• Design Slope (ft/ft):	0.015
• Dominant Slope (ft/ft):	0.015
• Design Manning's n (Channel,	LOB, and ROB): 0.035
• Dominant Manning's n (Chan	nel, LOB, and ROB): 0.030

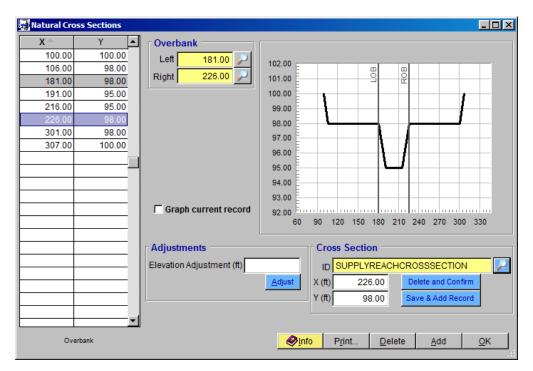
(e) If everything checks out, click the **Update** button to update the hydraulic analysis results. On the **SELECT OPTION** form, select *"This Record"* and click **OK**. Hit **Yes** to continue.

Select Option	Update Cross Section Hydraulics	\times
Option This Record All	This will update the hydraulic parameters for the current Cross Section. If 'Enter Data' is selected as the Source, data will NOT BE updated. If 'Calculate Data' is selected as the Source, the disabled fields (shown in yellow) will be updated if 'Design' and/or 'Dominant' are/is checked. Do you want to continue?	
<u>OK</u> <u>C</u> ancel	Yes No	

(f) Click **OK** to close the **River Mechanics – Cross Section Hydraulics** form.


2.2.3 Import the Supply Reach Cross Section Data

(a) To import the *"SUPPLYREACHCROSSSECTION"* dataset, open the IMPORT CROSS SECTIONS FROM ANOTHER PROJECT form (River mechanics → Import Cross Sections from Another Project).


Floo	od Control District of Maricopa County - BANKPROTECT	ION1 - Network
File E	dit River Mechanics Help	
	Scour	
ā	Riprap	
Ō	Launchable Riprap	
8	Lateral Erosion	
	<u>S</u> ediment Yield ►	
	Cross Section Hydraulics	
	Cross Section <u>G</u> eometry	
1	Import Cross Sections from Another Project	
		-

(b) On the IMPORT CROSS SECTIONS FROM ANOTHER PROJECT form, use the data provided below. Click Import to import the cross section data into the project. Select Yes to continue, and hit OK to close the form.

Import Project Reference:	PROJECTXSECTIONS
• Option:	Specific Cross section
Import Cross Section ID:	SUPPLYREACHCROSSSECTION

(c) To check if the cross section data has been successfully imported, open the NATURAL CROSS SECTIONS form (River Mechanics → Cross Section Geometry).

Compare the geometric data on the **NATURAL CROSS SECTIONS** form against the tabulated data listed below. Make necessary data edits or adjustments on the form, if necessary. Click **OK** to close the form.

Station (X)	Elevation (Y)	Notes
100	100	
106	98	
181	98	Left Bank Station
191	95	

Station (X)	Elevation (Y)	Notes
216	95	
226	98	Right Bank Station
301	98	
307	100	

(d) To check if the imported data has all the correct Flow Rates (cfs), Slopes (ft/ft), and Manning's n (Channel, LOB, and ROB) data, open the CROSS SECTION HYDRAULICS form (River mechanics → Cross Section Hydraulics). To compare, make sure that the Cross Section ID is set to "SUPPLYREACHCROSSSECTION".

Cross Section ID:	SUPPLYREACHCROSSSECTION
• Design Flow Rate (cfs):	3200
• Dominant Flow Rate (cfs):	800
• Design Slope (ft/ft):	0.010
• Dominant Slope (ft/ft):	0.010
 Design Manning's n (Channe 	el, LOB, and ROB): 0.035
 Dominant Manning's n (Cha 	nnel, LOB, and ROB): 0.030

ection ID	Entire Cross Section	on			
SUPPLYREACHCROSSSECTION	Source Cal	culate Data 💌	🔽 Design	Dominant	
1	Total Scour	Flow Rate (cfs)	3200	800	
Cross Section ID 🔶		Slope (ft/ft)	0.010000	0.010000	
UPPLYREACHCROSSSECTION		Manning's n Channel	0.035	0.030	Man's n
		Manning's n LOB	0.035	0.030	
		Manning's n ROB	0.035	0.030	
		Flow Area (sq ft)	419.58	96.46	
		Wetted Perimeter (ft)	205.84	44.54	
		Average Width (ft)	91.71	34.36	
		Top Width (ft)	204.45	43.72	
		Hydraulic Depth (ft)	2.05	2.21	
	No	rmal or Max Depth (ft)	4.58	2.81	
		Velocity (ft/sec)	7.63	8.29	
×					

- (e) If everything checks out, click the **Update** button to update the hydraulic analysis results.
- (f) On the SELECT OPTION form, select "This Record" and click OK. Hit Yes to continue.

Select Option	Update Cross Section Hydraulics
Option This Record All	This will update the hydraulic parameters for the current Cross Section. If 'Enter Data' is selected as the Source, data will NOT BE updated. If 'Calculate Data' is selected as the Source, the disabled fields (shown in yellow) will be updated if 'Design' and/or 'Dominant' are/is checked. Do you want to continue?
OK <u>C</u> ancel	Yes No

(g) Click OK to close the **River Mechanics – Cross Section Hydraulics** form.

Creating the three cross sections and evaluating their respective hydraulics in **Step 2** are essential steps before proceeding to **Step 3** of this tutorial.

2.3 Step 3 - Calculate Total Scour

2.2.4 Set up Total Scour Basic Data

(a) From the menu bar of main application window, click **River Mechanics** → **Scour**, to open the **TOTAL SCOUR** form.

🛃 Flood	Control District of Maricopa	County - BRIDGEPIER1
File Edit	River Mechanics Help	
File Edit	Scour Sediment Riprap Update from GIS Cross Section Hydraulics Cross Section Geometry	
_	Soils Soil Defaults Land Use Land Use Defaults	

List	Total	Long	T <u>e</u> rm	<u>G</u> e	eneral	Lo	cal	<u>B</u> edfori	
ID 🔺	Cross Section ID	Long Term Scour	General Scour	Local Scour	Bedform Scour	Bend Scour	Low Flow Scour	Total Scour	^
									=
									=
									_
									_
									=
									~
		Help 📀 [r	nfo Prir	Ň	elete A	vdd	мв	Jpdate	<u>0</u> K

- (b) Click the Add button to activate the necessary data entry fields.
- (c) Type "PIERNO1" into the ID textbox (this ID indicates that it is for Pier No.1).
- (d) Check the checkboxes **Long Term**, **General**, **Local**, and **Low Flow** (**Bed Form** is not computed because it will be part of pier local scour computation where the K3 factor, the *Bed Condition Factor*, will be used).
- (e) Click the browse button in the **Method** column across **Long Term** check box to launch long term scour method select menu.

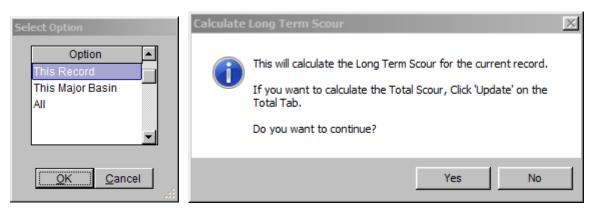
Sel	ect Method
	State Standard Level I
	Equilibrium Slope for Sediment-Laden Flow
	Equilibrium Slope for Clear Water Flow
	<u>O</u> K <u>C</u> ancel
_	.::

Select the *"Equilibrium Slope for Sediment-Laden Flow"* from the **SELECT METHOD** window, and click **OK** to close the **SELECT METHOD** window. (f) Click the browse button in the **Method** column across **General** check box to launch general scour method select menu.

La	cey
Ne	ill
BI	ench
	OK Cancel

- (g) Select the "*Neil*" from the **Select Method** window, and click **OK** to close the **Select Method** window.
- (h) Click the browse button in the **Method** column across **Local** check box to launch local scour method select menu.

Piers			
Abutments			
Culvert Outlet			
Guide Banks			
Grade Control or D	rop Structure - Schoklits	sch	
Grade Control or D	rop Structure - Verones	e	
Grade Control or D	rop Structure - Zimmerr	man/Maniak	
		OK Ca	incel


- (i) Select the "*Piers*" from the **SELECT METHOD** window, and click **OK** to close the **SELECT METHOD** window.
- (j) Click the Save button to save the entered data. The TOTAL SCOUR MB: 01
 ID: PIERNO1 window shows up like following figure.

List	<u>T</u> otal		Long T <u>e</u> r	m	<u>G</u> eneral	L <u>o</u> cal	<u>B</u> edform
D Major Basin IC IC							
Scour Depth –			0				
Include	e <u>Calc</u>	FS Value	Cus Calc	tom	Method		
Long Term 🔽	0.00	1.3 0.	00		Equilibrium Slope for S	ediment-Laden Flov	v 🔎
General 🔽	0.00	1.3 0.	00		Neill		\sim
Local 🔽	0.00	1.3 0.	00		Piers		\sim
Bedform 📃							~
Low Flow 🔽		1.3					<u> </u>
Total (ft)							
							~
	[Help	<i>.</i> ♦	Pr	int <u>D</u> elete A	dd MB	Update OK

2.2.5 Calculate the Long Term Scour

- (a) Click the Long Term tab.
- (b) Click browse D button beside the **Study Reach Cross Section ID** to select the cross section **ID** "*STUDYREACHCROSSSECTION*", and click **OK** to close the **SELECT CROSS SECTION ID** window.
- (c) Click browse we button beside the **Supply Reach Cross Section ID** to select the cross section **ID** "*SUPPLYREACHCROSSSECTION*", and click **OK** to close the **SELECT CROSS SECTION ID** window.
- (d) Enter the **D50 (mm)** values "1.5" and "1.5" for **Study** and **Supply**, respectively.
- (e) Enter the **D84 (mm)** values "10" and "12" for **Study** and **Supply**, respectively.
- (f) Enter the **D16 (mm)** values "0.5" and "1.0" for **Study** and **Supply**, respectively.
- (g) Enter "800" into Length to Pivot Pt (ft).
- (h) Click the Save button to save the entered data.

- (i) Click the **Update** button to update the data.
- (j) Select "*This Record*" from the **SELECTION OPTION** window, and click the **Yes** button on the **CALCULATE LONG TERM SCOUR** dialog box to proceed.

After the update, the result of the long term scour calculation shows in the following figure.

Total Scour - MB: 01	- ID: PIERNO1							2
List <u>T</u> ot	al Lo	ng T <u>e</u> rm] <u>G</u> enera	al L <u>o</u> c	al	<u>B</u> edform	L	ow Flow
Equilibrium Slope	Sediment-La	den (use Do	minant flow	rate)				
Study Rea	ch Cross Secti	on ID STUD	YREACHCRO	SSSECTION	P			
Supply Rea	ch Cross Sect	on ID SUPF	LYREACHCR	OSSSECTION	\sim			
	<u>Study</u>	<u>Supply</u>	<u>Equilib</u>			<u>Study</u>	<u>Supply</u>	<u>Equilib</u>
Flow Rate (cf	s) 800	800	800	Gradation Co	efficient	4.83	4.75	4.83
Slope (f	f) 0.015000	0.010000	0.0099396	Total Bed Mat	'l Q (cfs)	9.49	5.11	5.11
Manning's	n 0.030	0.030	0.030	Scour E	epth (ft)	4.05		
Wetted Area (sq	it) 83.81	96.46	96.66					
Hydraulic Depth (it) 2.01	2.21	2.21					
Normal or Max Depth (it) 2.51	2.81	2.81					
Average Width (t) 33.37	34.36	34.33					
Average Velocity (f/	s) 9.55	8.29	8.28					
D50 (mr	n) 1.500	1.500						
D84 (mr	n) 10.000	12.000						
D16 (mr	n) 0.500	1.000						
Length to Pivot Pt (t) 800							
	<u></u>	Help 🔗 lı	nfo P <u>r</u> int	. <u>D</u> elete	<u>A</u> dd	MB	<u>U</u> pdate	<u>о</u> к

2.2.6 Calculate the General Scour

(a) Click the General tab.

- (b) Click the browse we button beside the **Bridge Section ID** textbox to open the **SELECT CROSS SECTION ID** window. Select the "*BRIDGECROSSSECTION*" and click **OK** to close the window.
- (c) Click the browse button beside the Upstream Section ID textbox to open the SELECT CROSS SECTION ID window. Select the "STUDYREACHCROSSSECTION" and click OK to close the window (Note: Upstream section is for the area upstream of the bridge contraction. It can be generally represented by the study reach cross-section. The supply reach cross-section is not used as the upstream section because it is upstream of the study reach and is generally far away upstream from the bridge).
- (d) Click the browse we button beside the **Exponent m** textbox to open the **SELECT EXPONENT** window. Select the "*Coarse Gravel*", and click **OK** to close the window.
- (e) Click the browse button beside the Bend Factor, Z textbox to open the SELECT FACTOR window. Select the "Moderate Bend" bend factor and click OK to close the window.
- (f) Click the browse we button beside the **Water Temp (C)** textbox to open the **SELECT TEMPERATURE** window. Select the "20 Degrees Centigrade" and click **OK** to close the window.

Select Exponent	Select Factor	Select Temperature
Sand Coarse Gravel	Straight Reach Moderate Bend Severe Bend	0 Degrees Centigrade 20 Degrees Centigrade 40 Degrees Centigrade
<u>QK</u> Cancel	<u>OK</u> ancel	<u>OK</u> Cancel

- (g) **D50 (mm)**: Use the default value of "1.5" in the textbox (the default value is from the D50 value entered in study reach under Long Term scour menu for **Supply**). Or enter a value directly in this box. (<u>Note</u>: if a different value is entered here, the D50 value in Long Term for **Supply** will be changed).
- (h) Enter "45" into the Bend Angle (Degrees) textbox
- (i) Click the **Save** button to save the entered data.

- (j) Click the **Update** button on the **General** tab to update the data.
- (k) Select "*This Record*" from the **Selection Option** window, and click the **Yes** button on the **CALCULATE GENERAL SCOUR** dialog box to proceed.

Select Option	Calculate General Scour	\times
Option This Record This Major Basin All	This will calculate the General Scour for the current record. If you want to calculate the Total Scour, Click 'Update' on the Total Tab. Do you want to continue?	
<u>OK</u> ancel	Yes No	

The following figure shows what the window looks like after the data entry.

<u>L</u> ist	<u>T</u> otal	Long T	erm	<u>G</u> enera	al] L <u>o</u>	ocal	<u>B</u> edform	1	Low Flow
Sections -						Contra	action and	Bend Par	ameters -	
Bridge Se	ection ID BRIDG	ECROSSSE	CTION		$\tilde{\rho}$				<u>Upstream</u>	<u>Design</u>
Jpstream Se	ection ID STUDY	REACHCRO	DSSSECTI	ON	$\tilde{\rho}$	De	esign Flow I	Rate (cfs)	3200	3200
	,				<u> </u>		Hydraulic	Depth (ft)	2.13	2.13
Neill Para	meters (use Br	idge Secti	on) ——				Avg Vel	ocity (ft/s)	9.74	
		Desi	<u>an Do</u>	minant			Critical Vel	ocity (ft/s)	2.15	
D	esign Flow Rate	(cfs)	3200	800			Avg	Width (ft)	73.00	73.00
	Hydraulic Dept	th (ft)	2.71	2.01			Energy	Slope (f/f)	0.015000	0.015000
	Avg Widt	th (ft)	59.61	33.32			C	050 (mm)	1.500	1.500
	Expone	nt m 0.	85 🛨 🔑				Water	Temp (C)	20	\sim
	Bend Fac	tor Z	0.60 🔎			(Contraction	Scour (ft)	0.00	-
Scour Dept	h (Including Bend	d) (ft)	2.39				Flow	Condition L	ive Bed	1
						В	end Angle (Degrees)	45.0	
Scour Dep	th (ft)						rmal or Max		4.50	
Fi	nal General Scou	ur (ft)	2.64					Scour (ft)	2.64	
						Contrac	tion + Bend	Scour (ft)	2.64	
									2.04	
		Help	Info	Print		Delete	Add	мв	Update	<u>0</u> K

2.2.7 Calculate the Local Scour

- (a) Click the Local tab.
- (b) Click the browse button we beside the **Bridge Section ID** textbox to open the **SELECT CROSS SECTION ID** widow. Select the "*BRIDGECROSSSECTION*" and click the **OK** button to close the window.

- (c) Enter "2.5" into the **Pier Width, (ft)** textbox.
- (d) Enter "60" into the Pier Length, L (ft) textbox.
- (e) Enter "30" into the Angle of Attack (Degree) textbox.
- (f) Enter "1.5" into the **D50 (mm)** textbox.
- (g) Enter "20.0" into the **D95 (mm)** textbox.
- (h) Click the browse button we beside the **Nose Shape Factor, K1** textbox to open the **Nose Shape** window. Select "*Round Nose*" item, and click **OK** button to close it.
- (i) Click the browse button window. Select "*Medium Dunes*" item and click **OK** button to close the window.

lose Shape	Bed Condition
Square Nose Round Nose	Clear Water Scour Plane Bed and Antidune Flow
Circular Cylinder Group of Cylinders	Small Dunes Medium Dunes
Sharp Nose	Large Dunes
<u>O</u> K <u>C</u> ancel	<u>Q</u> K <u>C</u> ancel

- (j) Click the **Save** button to save the entered data.
- (k) Click the **Update** button to update the data.
- (I) Select "*This Record*" from the **SELECTION OPTION** window, and click **Yes** from the confirmation message to proceed.

After the update the window looks like what is shown in the following figure.

Total Scou	r - MB: 01 - ID: P	IERN01							_ 🗆 ×
List	<u>T</u> otal	Long T <u>e</u>	rm	<u>G</u> eneral	L	<u>o</u> cal	<u>B</u> edform	n 📕 🖿	ow Flow
Pier Desig	jn Parameters	(use Desig	n flow) —						
Manual I	nput Parameters								
E	Bridge Section ID	BRIDGECF	ROSSSECT	FION	2				
Normal	or Max Depth (ft)	4.82		Froude N	umber	0.89			
Averag	e Velocity (ft/sec)	11.14	Nose	e Shape Fac	tor, K1	1.0	P Round N	ose	
	Pier Width, a (ft)	2.50	Angle	of Attack Fac	tor, K2	3.50			
F	Pier Length, L (ft)	60.00	Bed C	ondition Fac	tor, K3	1.2	🔎 Medium I	Dunes	
Angle of	Attack (Degrees)	30.00	A	rmoring Fac	tor, K4	1.00			
	D50 (mm)	1.500		Scour De	pth (ft)	25.17			
	D95 (mm)	20.000							
		Help	<i>.</i> ⊘ <u>I</u> nfo	P <u>r</u> int	<u>D</u> elete	<u>A</u> dd	MB	<u>U</u> pdate	<u>о</u> к

2.2.8 Calculate the Low Flow Scour

On the **TOTAL SCOUR** form, select the **Low Flow** tab. The following figure shows what the window looks like before data entry.

	ur - MB: 01 - ID: A		r		1		n		
<u>L</u> ist	<u>T</u> otal	Long T <u>e</u> i	rm	<u>G</u> eneral		L <u>o</u> cal	<u>B</u> edform		ow Flow
		Lt	Char	w Rate (cfs) nnel Material cisement (ft)		Grapt			
		Help	.⊘ Info	Print	<u>D</u> elete	Add	MB	<u>U</u> pdate	<u>о</u> к

- (a) Enter "100" into the Low Flow Rate (cfs) textbox.
- (b) Click browse we button beside the **Channel Material** to select the channel material data. Choose *"Medium Sand"* and click **OK** to exit the **Select CHANNEL MATERIAL** window.

- (c) Click the **Save** button to save the data just entered.
- (d) Click the **Update** button and select *"This Major Basin"* from the **Selection Option** window. Click **Yes** to continue.

Select Option	Calculate Low Flow Scour	\times
Option This Record This Major Basin All	This will calculate the Low Flow Scour for all records in the current Major Basin. If you want to calculate the Total Scour, Click 'Update' on the Total Tab. Do you want to continue?	
<u>QK</u> <u>C</u> ancel	Yes No	

After the update the final result of the low flow scour calculation result shows in the following figure

Total Scour	- MB: 01 - ID: PI	TERNO1						
List	<u>T</u> otal	Long T <u>e</u> rm	<u>G</u> eneral	Loo	al	<u>B</u> edform	Lo	w Flow
		Cha	low Rate (cfs) annel Material M ncisement (ft)	2.50	d 🔎			
		Help 🔗 Int	fo P <u>r</u> int	<u>D</u> elete	<u>A</u> dd	MB	<u>U</u> pdate	<u>О</u> К

2.2.9 Calculate the Total Scour

(a) Click the **Update** button to compute the total scour and individual scour components.

(b) Select "This Record" from the SELECTION OPTION window to proceed.

After the update the window, the total scour results and individual scour components are displayed as shown in the following figure.

Total Scour - MB:	01 - ID: PI	ERNO1								
List	<u>T</u> otal	Long T <u>e</u> r	m	(<u>G</u> eneral	Lo	cal	<u>B</u> edform	Lo	w Flow
ID Major Basin IC IC) 01) PIERNO) 1								
Scour Depth -										
Include	e <u>Calc</u>	<u>FS</u> <u>Value</u>	Custo Calc		Method					
Long Term 🔽	4.05	1.3 5.27		Γ	Equilibriu	ım Slope fo	r Sediment-	Laden Flow		\gg
General 🔽	2.64	1.3 3.43			Neill					\sim
Local 🔽	25.17	1.3 32.72			Piers					\sim
Bedform 🗖			_							A
Low Flow 🔽	2.50	1.3 3.25	5 Г							
Headcut 🗖										
Tailcut 🗖			_							-
Total (ft)		44.67	'							
		Help	Info		P <u>r</u> int	<u>D</u> elete	<u>A</u> dd	MB	<u>U</u> pdate	<u>0</u> K

2.4 Step 4 - Report and Document the Results

In this section, the instruction will be given on how to view, print, and export the calculation results of the total scour.

The total scour is the sum of the long term scour, general scour, local scour, bedform scour and low flow scour. In this tutorial, these scour components are covered.

(a) To view the results on the screen, click the Print ... button on the TOTAL SCOUR – MB: 01 – ID: PIERNO1 window, a report will be generated as is shown in the following figure.

1 of 1 🕨 🕨	- 8	🚳 🍰	93%	🖌 💏 Total:1 100% 1 of 1	
			Flood Cont	ol District of Maricopa County	
			Drainage	Design Management System CHANICS - TOTAL SCOUR	
Page 1			Project	Reference: BRIDGEPIER1 224/2016	
Major Basin: 01					
ID: PIERNO1	Cross Section	ID: STUI	DYREACHCR	DSSSECTION	
Type	Calc (ft)	FS	Value (ft)	Method	
Long Term	4.05	1.30	5.27	Equilibrium Slope for Sediment-Laden Flow	
General	2.64	1.30	3.43	Nell	
Local	25.17*	1.30	32.72	Piers	
Bedform		1.30		Comments	
Low Flow	2.50	1.30	3.25		
Head cut	-	1.30	-		
	-	1.30			
Tallout	-				

- (b) To print out the results on a printer, click the printer symbol (a).
- (c) To export the results in PDF format or other formats, click the export symbol (🚖)
- (d) The individual scour components results and cross section hydraulics results can also be viewed, printed, and exported by clicking the Print... button under individual component scour menus and Cross Section Hydraulics menu.

This concludes this tutorial for bridge pier scour evaluation.