

DRAINAGE DESIGN MANAGEMENT SYSTEM FOR WINDOWS VERSION 6.0.5

TUTORIAL **# 17** STREET DRAINAGE SYSTEM HYDRAULIC ANALYSIS

KVL Consultants, Inc.

STREET DRAINAGE SYSTEM HYDRAULIC ANALYSIS

TABLE OF CONTENTS

No. Section

Page

1.0	INTROD	UCTION	
2.0	Exampl	e Prob.	LEM 2
3.0	S tep-by	'-Step F	PROCEDURE
	3.1	Model	Development for Rational Method3
		3.1.1	Set Project Defaults4
		3.1.2	Evaluate the Average Rainfall of the Project4
		3.1.3	Evaluate the Model Parameters for the Sub Basins Using GIS7
		3.1.4	Update Conveyance Facilities Data (Hydraulics Conveyance Facilities)9
	3.2	Model	Network Development
		3.2.1	Develop Rational Method Network (Hydrology → Rational Method → NETWORK)10
		3.2.2	Run the Model (Hydrology $ ightarrow$ Rational Method $ ightarrow$ Model)11
	3.3	Sub-Su	rface Flow Hydraulics Analysis [Underground Pipe Network]12
		3.3.1	Update StormPro Lines (Hydraulics → StormPro Backwater → Lines)12
		3.3.2	RUN STORMPRO MODEL (HYDRAULICS - STORMPRO BACKWATER - MODEL)12
	3.4	Surfac	e Flow Hydraulics Analysis [Inlet and Street Facilities]14
		3.4.1	Analyze Street Drainage Hydraulics (Hydraulics → Street Drainage → Network Model)
4.0	Summa	RY	

STREET DRAINAGE SYSTEM HYDRAULIC ANALYSIS

DATE UPDATED: APRIL 20, 2022 TUTORIAL TIME: 45 MINUTES

1.0 INTRODUCTION

This tutorial was developed to showcase the capability of the Street Drainage Hydraulics module within DDMSW. Important feature elements of the tutorial include:

- Hydrologic model development for Rational Method from GIS shapefiles
- Model network development for the Rational Method
- Hydraulics analysis of Catch Basin inlets using the Street Drainage Network Model.
- Hydraulic Grade Line (HGL) evaluation of the Conveyance Facilities using the **STORMPRO** Backwater Model.

The Street Drainage Hydraulics module is comprised of three hydraulic analysis tools, namely: Street Drainage Calculator, Street Drainage Network Model, and **StormPro** Backwater Model.

The Street Drainage Calculator is designed for stand-alone hydraulic analysis of individual catch basin inlets and the street section on which the inlet structures are located. The tool evaluates the inlet capacity and the corresponding spread of surface flow on the street. This tool is useful for identifying and selecting inlet types and sizes to use during the pre-design stage when performing preliminary project cost evaluation and public safety assessment.

The Street Drainage Network Model is designed for hydraulic analysis of a network of inlets where types and capacities of upstream inlet facilities impact the selection of types and sizes of the downstream facilities. This tool evaluates the hydraulic performance of the entire drainage network as well as immediate street spread of surface flows.

The **STORMPRO** Backwater Model is designed to evaluate the hydraulic grade line (HGL) of the sub-surface flows in the pipe / conduit network that is serving to convey the collected flows from the ground surface to be discharged to system outfall(s).

In summary for Urban Drainage applications, the Street Drainage Calculator and the Street Drainage Network Model are designed to evaluate the hydraulics of the surface flows through the catch basin inlets and the respective adjoining streets, while the **StormPro** Backwater Model analyzes the hydraulics of the subsurface

flows in the underground conduit network aimed at evaluating the hydraulic grade line (HGL) of the sub-surface drainage system.

2.0 EXAMPLE PROBLEM

This tutorial provides a Street Drainage working example already developed in **DDMSW** (Project Name: **KVLEXAMPLE12**). The layout of the drainage system that shows both the surface and sub-surface components to be analyzed is illustrated below.

The drainage system is comprised of ten (10) sub-basin areas represented by halfstreets from which the design flows would be generated. The flows from these contributing areas enter ten (10) inlets - one inlet for each sub-basin area. From the inlets, the flows are conveyed to the sub-surface piping system located in the middle of the street. The flows are conveyed from the upstream end (left) to the downstream end (right) to be discharged at the system outfall.

The physical association of the sub-basins, inlets and the underground pipes could be explained from the Table below. For example, the flows from SUB BASIN ST0050 (north half-street) enter INLET CB0050 and received by PIPE 010045 for conveyance downstream. Similarly, the flows from SUB BASIN ST0045 (south half-street) enter INLET CB0045 and received by PIPE 010045.

NO.	SUB BASINS IDS	INLET IDS	RECEIVING UNDERGROUND PIPE IDS	SUB BASIN AREA NOTES
1	ST0050	CB0050		North half-street
2	ST0045	CB0045	010045 (U/S)	South half-street
3	ST0040	CB0040		North half-street
4	ST0035	CB0035	010035	South half-street

NO.	SUB BASINS IDS	INLET IDS	RECEIVING UNDERGROUND PIPE IDS	SUB BASIN AREA NOTES
5	ST0030	CB0030		North half-street
6	ST0025	CB0025	010025	South half-street
7	ST0020	CB0020		North half-street
8	ST0015	CB0015	010015	South half-street
9	ST0010	CB0010		North half-street
10	ST0005	CB0005	010005 (D/S)	South half-street

From the flows being conveyed through the main trunk comprising of the five (5) pipe segments (i.e., PIPE IDs 0100045, 010035, 010025, 010015, and 010005), the program generates the water surface pressure gradient (WSPG) which represents the water surface profile of the event flows that pass through the drainage system.

3.0 STEP-BY-STEP PROCEDURE

This tutorial presents the procedure in the use of the Street Drainage Program tools that are available in DDMSW. These tools are employed from model development to running the model. The analysis procedure is divided into four stages – each stage of analysis has a defined objective. Each stage is foundational to achieving the objective of the next stage that would follow. The four stages are identified as follows:

- Stage 1 Model Development for Rational Method
- Stage 2 Model Network Development
- Stage 3 Surface Flow Hydraulics Analysis [Inlet and Street Facilities]
- Stage 4 Sub-Surface Flow Hydraulics Analysis [Underground Pipe Network]

It some cases, like this tutorial, Stage 4 would appear to be presented and performed ahead of Stage 3. Stages 3 and 4 can be done alongside each other as their results are mutually dependent. During the pre-design stage, choosing the sizes of basin inlets and pipes impact the water surface hydraulics on individual surface drainage facilities (Stage 3) while also impacting the combined hydraulic performance of the entire storm drainage system (Stage 4).

3.1 Model Development for Rational Method

Rational Method is used in this tutorial to evaluate the flows for the sub-basin areas. GIS shape files for the sub-basins, rainfall, times of concentration, and land uses were already developed. The following steps are provided to build the hydrologic model from which the contributing flows from individual sub-basins are generated.

3.1.1 Set Project Defaults

- (1) Start DDMSW.
- (2) Open the SELECT PROJECT form and select the List tab (File → Select Project → List tab)
- (3) From the list of **Street Drainage** projects, select **V605_KVLEXAMPLE12**.
- (4) Once the specific project is selected, switch to the *Details* tab. Set the project defaults as shown on the screen capture provided below and adjust the *Modification Date* to reflect the current Date. Click *OK* to close window.

Select Project	t						
	<u>L</u> ist		Details		Default	Table Version	s
Project R	Reference				Project Defa	ults	
Project ID	00149	Reference	V605_KVLEXAMPLE12		Model	Rational	\sim
Title	Street Drainage	Example					
Location	Maricopa Count	у			Land Use	PHOENIX	\sim
Agency	Flood Control D	istrict of Mar	icopa County		Rainfall	NOAA14	
	Hydrology and	d Hydraulics	Only		Roads	PHOENIX	
	River Mechan	ics Only			Inlets	PHOENIX	
Agency Flood Control District of Maricopa County Hydrology and Hydraulics Only River Mechanics Only Min/Max Tc (minutes) Minimum Tc							
					N	linimum Tc	5 🔎
					М	aximum Tc	90 🔎
				^			
Street Drail	nage Hydraulics	module with	IIII DDMSVV.				
				~			
Modification	Date 03/24/202	2	Update Project Defaults		P <u>r</u> int <u>D</u> el	ete <u>A</u> dd	<u>0</u> K

3.1.2 Evaluate the Average Rainfall of the Project

For this tutorial, NOAA14 Rainfall shall be used to generate the rainfall data for the project area using GIS shape file. The GIS shape file of the Rainfall polygon is included in the V605_KVLExample12 subfolder in the Maps folder (C:\FCDMC\DDMSW605\Maps\KVLExample12). Your path to this file may be different from that shown in this example.

- Open the NOAA 14 RAINFALL FOR THE PROJECT form (Hydrology → Rainfall)
- (2) Click the 'Browse' button at the right end of the *GIS Rainfall Map* textbox to navigate to the folder location of the *Rainfall.shp (i.e., C:\FCDMC\DDMSW605\Maps\V605_KVLExample12).*
- (3) Select the Rainfall.shp and press OK
- (4) On the NOAA 14 RAINFALL FOR THE PROJECT form, click Save.
- (5) Click *Update* to develop the average rainfall data for the project.
- (6) Click *Yes* to continue and to exit the UPDATE NOAA14 RAINFALL USING GIS dialog box.

NOAA 14 Rainfall for Project												
GIS Rainfall Map												
C:\FCDMC\DDMSW605\MAPS\V605_KVLEXAMPLE12\R	CDMC\DDMSW605\MAPS\V605_KVLEXAMPLE12\RAINFALL.SHP											
	Check <u>R</u> e	equired M	ap Fields	R	equired <u>N</u>	lap Fields	5					
Г	Average	Rainfal	l Data fo	or Projec	:t							
		<u>2 yr</u>	<u>5 yr</u>	<u>10 yr</u>	<u>25 yr</u>	<u>50 yr</u>	<u>100 yr</u>					
	5 Min	0.245	0.331	0.398	0.488	0.557	0.628					
	10 Min	0.372	0.504	0.606	0.743	0.848	0.957					
	15 Min	0.461	0.625	0.751	0.921	1.051	1.186					
	30 Min	0.621	0.842	1.011	1.240	1.416	1.597					
	1 Hour	0.769	1.042	1.252	1.535	1.752	1.976					
	2 Hour	0.886	1.183	1.410	1.721	1.956	2.202					
	3 Hour	0.969	1.268	1.507	1.841	2.107	2.383					
	6 Hour	1.150	1.472	1.728	2.077	2.350	2.634					
	12 Hour	1.279	1.618	1.884	2.243	2.517	2.802					
	24 Hour	1.520	1.968	2.321	2.814	3.203	3.608					
	Log	<u></u>	Print		data	Source	OK					
	<u>L</u> og	₩ <u>i</u> nio	P <u>r</u> int		odate	Source	<u>0</u> K					

- (7) Click **OK** to exit **NOAA14 RAINFALL FOR THE PROJECT** form.
- (8) To see the graph of the IDF curves, open the RAINFALL INTENSITY form (Hydrology → Rational Method → Rainfall Intensity) and click the Graph button at the bottom right of the form.

		<u>L</u> ist				D	e <u>t</u> ails
Look for							
Tc	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	
5.0	2.94	3.97	4.78	5.86	6.68	7.54	
5.1	2.92	3.95	4.75	5.82	6.65	7.50	
5. 2	2.91	3.93	4.72	5.79	6.61	7.45	
5.3	2.89	3.91	4.70	5.76	6.58	7.41	
5.4	2.88	3.89	4.67	5.73	6.54	7.37	
5.5	2.86	3.87	4.65	5.70	6.50	7.33	
5. <mark>6</mark>	2.84	3.84	4.62	5.67	6.47	7.29	
5.7	2.83	3.82	4.60	5.64	6.43	7.25	
5.8	2.81	3.80	4.57	5.61	6.40	7.22	
5.9	2.80	3.78	4.55	5.58	6.36	7.18	
5. 0	2.78	3.76	4.52	5.55	6.33	7.14	
6.1	2.77	3.74	4.50	5.51	6.29	7.10	
6.2	2.75	3.72	4.47	5.48	6.26	7.06	
6.3	2.74	3.70	4.45	5.46	6.23	7.02	
6.4	2.72	3.68	4.42	5.43	6.19	6.98	
6.5	2.71	3.66	4.40	5.40	6.16	6.95	
•							Þ

- (9) Click **OK** to close the form that shows the IDF plots of the Rainfall Intensities for different return periods.
- (10) Click **OK** to exit the **Rainfall Intensity** form.

3.1.3 Evaluate the Model Parameters for the Sub Basins Using GIS

The sub-basins, times of concentration (Tc), and land use data for the project have already been developed. The shape files of the sub-basins, land use and Tc are all located in the *"Maps\V605_KVLExample12"* folder (*C:\FCDMC\DDMSW605\ Maps\V605_KVLExample12*). Again, your path to these relevant project files may be different.

- (1) Open the UPDATE HYDROLOGY FROM GIS form (Maps → Update Hydrology)
- (2) Using the *Browse* button at the right side of the **Sub Basins** textbox, navigate to the folder location of the *SubBasins.shp* and select the file.
- (3) Click **OK** to close the **OPEN** dialog box.
- (4) Click *Save* to continue.
- (5) Repeat steps (2), (3) and (4) for the Land Use and Tc data files.

The completed form is shown below:

对 Update hydr	ology from GIS - MB: 01 Edit		
Name and	Path of Maps for Hydrology		
Sub Basins	C:\FCDMC\DDMSW605\MAPS\V605_KVLE	EXAMPLE12\SUBBASINS.SHP	P
Land Use	C:\FCDMC\DDMSW605\MAPS\V605_KVLE	EXAMPLE12\LANDUSE.SHP	and the second se
Tc	C:\FCDMC\DDMSW605\MAPS\V605_KVLE	EXAMPLE12\TC.SHP	1
GIS Project			Ś.
		Check <u>R</u> equired Map Fields	Required Map Fields
Update Op ✓ Sub Bas ✓ Land Us ✓ Tc	in Major Basin 01	Map File Key Field Na Land Use Code	
		Check Log <u>C</u> ancel	<u>Save Update OK</u>

(6) To update the model parameters using the information provided by the three shape files, click the *Update* button.

(7) If no warning or program error messages are generated, click **OK** to exit the **UPDATE HYDROLOGY FROM GIS** form.

The model parameters are now evaluated. It is a good practice for the user to check and validate the evaluated model parameters to ensure that model parameter values are correct.

(8) To view the evaluated model parameters, open the SUB BASINS form (Hydrology → Sub Basins).

🛊 Sub Ba	sins - MB: 01									
		<u>L</u> ist						De <u>t</u> ails		
Look	for									
Sort 🔺	Sub Basin	Area	Length	Slope	Q2	Q10	Q100			
10	010005	3.31	956	11.0	4.3	7.7	15.2			
20	010010	3.38	990	10.7	4.2	7.8	15.3			
30	010015	2.89	831	12.7	4.0	7.2	13.7			
40	010020	2.86	850	12.4	3.6	6.4	12.4			
50	010025	2.29	760	13.9	3.3	6.1	11.4			
60	010030	2.44	807	13.1	3.1	5.7	10.9			
70	010035	1.99	720	14.7	2.9	5.3	10.1			
80	010040	2.32	760	13.9	3.3	6.0	11.8			
90	010045	1.44	585	18.1	2.3	4.2	8.2			
100	010050	2.03	666	15.9	3.1	5.6	10.9			_
										_
										-
										— .
•		1		1	1		I			•
		9	Info Re	Sort F	Print	Delete	Add	мв	pdate	<u>о</u> к

(9) On the *List* tab, select the first record (i.e., *Sub Basin* "010005").

(10) Select the *Details* tab to view the evaluated *Sub Basin Parameters* and the *Sub Basin Hydrology Summary* table.

Sub Basins - MB: 01							
<u>L</u> ist				[De <u>t</u> ails		
Sub Basin	Sub Basin Hydr	ology Su	nmary —				
Major Basin 01 🔎		<u>2 yr</u>	<u>5 yr</u>	<u>10 yr</u>	<u>25 yr</u>	<u>50 yr</u>	<u>100 yr</u>
Sub Basin 010005	Q (cfs)	4.3	6.2	7.7	10.6	13.1	15.2
Sort 10 🖨	CA(ac)	2.68	2.68	2.68	2.88	3.01	3.01
	Vol (ac-ft)	0.1979	0.2642	0.3149	0.4130	0.4906	0.5523
Sub Basin Parameters	Custom Tc						
Area (acres) 3.31	Tc (min)	20.7	17.9	16.5	15.0	14.1	13.3
Length (ft) 956	Recession (min)	46.126	43.974	42.881	41.573	40.278	39.459
USGE (ft) 96.0	l (in/hr)	1.59	2.32	2.89	3.68	4.35	5.06
DSGE (ft) 94.0 Slope (ft/mi) 11.0	Comments						^
Value Default Custor Kb 0.037 0.037	<u>n</u>						,
	Info Re <u>S</u> ort P	<u>r</u> int <u>I</u>	<u>D</u> elete	<u>A</u> dd	MB	<u>U</u> pdate	<u>0</u> K

- (11) Navigate from one Sub Basin record to another to check the 'Sub Basin Hydrology Summary' results. All textboxes should all have values.
- (12) Click **OK** to exit the **SUB BASINS** form.

3.1.4 Update Conveyance Facilities Data (Hydraulics → Conveyance Facilities)

For this tutorial, the **STORMPRO** backwater model is used to develop the hydraulic grade line (HGL). Therefore, it is necessary to Sort the Conveyance facilities in the correct order and establish the *Line ID* for each *Conveyance Facility*. With respect to the Figure (i.e., configuration of the drainage system) shown on the first page, all *Conveyance Facilities* comprising of the main trunk line will be *Line "100"*.

Open the **CONVEYANCE FACILITIES** form (*Hydraulics* → *Conveyance Facilities* > *List* tab) and select *Facility ID* "010005". Select the '*Details*' tab.

Conveyance Facilities - MB: 01							
List				De <u>t</u> a	ails		
	Section Type			Calcul	ations —]
MB ID 01 🔎	Section	Pipe	\sim		Capa	city (cfs)	78.5
Facility ID 010005	Length (ft)	166.70			Slo	pe (ft/ft)	0.0030
Line ID 100	Manning's n	0.013 🔎			Veloc	city (fps)	2.8
Sort 10 🖨	Diameter (in)	48			Normal D	epth (ft)	
	No. of Barrels	1 ≑			Critical D	epth (ft)	
Model Options							
RP (yrs) 10 🄑 All RP	No. of Manholes	0 ≑			Q		Upstream
Custom Q					(cfs)		HGL (ft)
Model Road First Pipe				2 Yr	29.5		85.55
Outfall 🗹				5 Yr	41.1		85.86
D/S Pipe ID 🔎				10 Yr	50.1		86.07
E L 2	Comments			25 Yr	66.3		86.41
U/S (ft) D/S (ft)	1		^	50 Yr	78.7		86.65
Ground 94.00 95.00				100 Yr	89.1		86.83
Invert 84.00 83.50							
			*				
Ø <u>I</u> nfo Re	e <u>S</u> ort P <u>r</u> int <u>D</u> e	elete <u>A</u> dd	<u>G</u> rap	bh I	MB <u>I</u>	<u>U</u> pdate	<u>0</u> K

The following table presents the input data for all the *Conveyance Facilities*. Common to all are the following: All *"Pipe"* **Section**; **Manning's n** is *"0.013"*; **No of Barrels** is *"1"*.

	ID			Mode	el Opt	ions			Eleva	ations			Secti	ion
Facility ID	Line ID	Sort	RP	Model Road		Outfall	DS Pipe ID	USGE	DSGE	USIE	DSIE	Length	Dia	Manholes
010005	100	10	10			Х		94.00	95.00	84.00	83.50	166.70	48	
010015	100	20	10					95.00	94.00	85.00	84.00	100.00	48	1
010025	100	30	10					96.00	95.00	86.50	85.50	829.30	42	1
010035	100	40	10					97.00	96.00	88.00	87.00	761.10	36	1
010045	100	50	10		Х			98.00	97.00	89.50	88.50	727.10	30	1

After validating the entered data for the *Conveyance Facilities*, click *OK* to close the **CONVEYANCE FACILITIES** form.

3.2 Model Network Development

3.2.1 Develop Rational Method Network (Hydrology → Rational Method → NETWORK)

Open the **RATIONAL METHOD NETWORK** form (*Hydrology* → *Rational Method* → *Network*) to build the model network.

Enter the data as shown below:

k for		First Pipe	е							
Sort 🛎	ID	Туре	Combine		^					
10	010050	Sub Basin					letwork -			
20	010045	Sub Basin			-	N	lajor Basi		Ď	
30	010045	Combine	2		-		-			
40	010045	Convey			-			Sort	120 韋	
50	010040	Sub Basin					1	Type Conve	у	
60	010035	Sub Basin			-			ID 01002	5 🔎 Г	First Pipe
70	010035	Combine	3		-					
80	010035	Convey			-					
90	010030	Sub Basin								
100	010025	Sub Basin				S	Sub <u>B</u> asin	Combine	Convey	Divert
110	010025	Combine	3					_		
120	010025	Convey					<u>H</u> old	Recei <u>v</u> e	Retrieve	Diversion
130	010020	Sub Basin					Storage			
140	010015	Sub Basin							Chook	Mohuork
150	010015	Combine	3						Check	Network
160	010015	Convey								
170	010010	Sub Basin								^
180	010005	Sub Basin								
<				>						~

After completing the data entry, click the *Check Network* button to make sure that all the *Sub Basins* elements are in the network.

After the program verifies that the Network has no issues, click **OK** to close the **RATIONAL METHOD NETWORK** form.

3.2.2 Run the Model (*Hydrology* \rightarrow *Rational Method* \rightarrow *Model*)

The model is now ready to be run.

Open the **RUN RATIONAL METHOD MODEL** form (*Hydrology* → *Rational Method* → *Model*) and enter the data as shown below.

🚁 Run Rational Metho	d Model - MB: 01
Return Period	Options Multiple Basins Major Basin 01 Design RP 10 Update Rational Method Update Conveyance Flows
✓ 100 Year	Info Storage Results Run Model OK

Click the *Run Model* button to execute the program. Click *Yes* to continue.

If no issues are found during the execution of the model, click **OK** to close the form.

3.3 Sub-Surface Flow Hydraulics Analysis [Underground Pipe Network]

3.3.1 Update StormPro Lines (Hydraulics → StormPro Backwater → Lines)

It is necessary to establish the starting water surface elevation for *Line ID* "100", which is the main line. If left blank, the value will default to $(D+D_c)/2$, where D is the depth of the facility (e.g., Diameter of the Pipe), and D_c is the critical flow depth. For *Line ID* "100", check that it is a *Main Line* (i.e., check the *Main Line* checkbox).

🛃 Storm	Pro Lines - ME	B: 01					
M	lain Line						
Line ID	Downstream ID				Starting HGL 100		Major Basin ID 01
100	BASIN					II	Line ID 100
							Main Line 🔽
							Starting HGL
							2 Year
						-	5 Year
							10 Year
							25 Year
						-	50 Year
							100 Year
							Design
						-	
4						*	
						D	
					<i>.</i>	P	<u>rint MB U</u> pdate <u>O</u> K

3.3.2 RUN STORMPRO MODEL (HYDRAULICS → STORMPRO BACKWATER → MODEL)

Select all **Return Periods**, check **All Lines** checkbox and check **Delete All Prior Results** checkbox. Please note that it is necessary to establish a **Model Runs Path** folder for the model results. If a warning is triggered after clicking the **Run Model** button, click **OK** to launch the **PROJECT PATHS – EDIT** form to set the **Model Runs Path** for the project. Click **OK** to exit the **PROJECT PATHS – EDIT** form.

🔛 Run	StormPro Model - MB	: 01		
	Return Period 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year ()	Options All Lines Image: All Line ID Line ID 100 Delete All Prior Results Error File Results Run M	lodel QK	
Project Paths Edit				
Machine ID	FC1W93270707 # CAR	RLOS.CARRIAGA		
Agency	Flood Control District of	f Maricopa County		
Project	Street Drainage Examp	le		
GIS Files Path				
Model Runs Path	C:\FCDMC\DDMSW605	MODLRUNS/V605_KVLEXAMPLE12	2\	
			Save Cancel	<u>0</u> K

Back to the **RUN STORMPRO MODEL** form, click the **Run Model** button to rerun the model. After successful model run, the results can be viewed by clicking the **Results** button.

100 10 100 10 100 10	0 010005 0 010005 0 010005 0 010005 0 010005	List Equivalent Size 48" Dia Pipe 48" Dia Pipe 48" Dia Pipe 48" Dia Pipe	t Box Section Station 0.00 6.83 54.39	Flow 54.9 54.9 54.9	Velocity 7.63 7.28	Inv 83.50 83.52	De <u>t</u> ails HGL 85.73 85.84	GE 95.00 94.96	HGL>GE
100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10	0 010005 0 010005 0 010005 0 010005 0 010005	Size 48" Dia Pipe 48" Dia Pipe 48" Dia Pipe	Station 0.00 6.83 54.39	Flow 54.9 54.9	7.63 7.28	83.50	85.73	95.00	HGL>GE
100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10	0 010005 0 010005 0 010005 0 010005 0 010005	48" Dia Pipe 48" Dia Pipe 48" Dia Pipe	0.00 6.83 54.39	54.9 54.9	7.63 7.28	83.50	85.73	95.00	HGL>GE
100 10 100 10 100 10 100 10 100 10	0 010005 0 010005 0 010005	48" Dia Pipe 48" Dia Pipe	6.83 54.39						
100 10 100 10 100 10	0 010005 0 010005	48" Dia Pipe	54.39			83.52	85.84	94.96	
100 10 100 10	0 010005			54.9					
100 10		48" Dia Pipe	466.70		6.94	83.66	86.07	94.67	
	010015		166.70	54.9	6.79	84.00	86.45	94.00	
	010013	48" Dia Pipe	171.70	41.6	3.90	84.00	87.16	94.05	
100 10	010015	48" Dia Pipe	184.94	41.6	4.09	84.14	87.15	94.18	
100 10	010015	48" Dia Pipe	196.54	41.6	4.29	84.26	87.14	94.30	
100 10	010015	48" Dia Pipe	206.95	41.6	4.50	84.37	87.13	94.40	
100 10	010015	48" Dia Pipe	216.24	41.6	4.72	84.47	87.11	94.50	
100 10	010015	48" Dia Pipe	224.46	41.6	4.95	84.56	87.09	94.58	
100 10	010015	48 Dia Pipe	231.79	41.6	5.19	84.63	87.07	94.65	
100 10	010015	48" Dia Pipe	238.16	41.6	5.45	84.70	87.04	94.71	
100 10	010015	48" Dia Pipe	243.49	41.6	5.71	84.76	87.01	94.77	
100 10	010015	48" Dia Pipe	245.05	41.6	5.82	84.77	86.99	94.78	
100 10	010015	48" Dia Pipe	245.82	41.6	8.41	84.78	86.44	94.79	
100 10 <	010015	48" Dia Pine	256 73	41.6	8 02	84 90	86.62	94 90	>
				<i>.</i>					

To view the hydraulic grade line, click the *Graph* button.

3.4 Surface Flow Hydraulics Analysis [Inlet and Street Facilities]

3.4.1 ANALYZE STREET DRAINAGE HYDRAULICS (HYDRAULICS → STREET DRAINAGE → NETWORK MODEL)

There are 10 street sections that need to be modeled as shown on the Figure in the first page of this tutorial. A summary of the data is shown below and details for each section are shown on the figures that follow. It is important that the records are sorted in the order they need to be modeled. After entering all the data, click *Update* to run the Model.

Street	t Drainage	Network N	/lodel - MB	: 01							X
List							Details				
Loo	k for										
Sort	Street ID	Sub Basin	Inlet ID	Inlet Specification	Bypass To	Allowable Spread (ft)	Spread (ft)	Total Q (cfs)	Intercepted (cfs)	Bypass (cfs)	^
10	ST0050	010050	CB0050	P1569-M1-10	ST0040	22.00	16.56	5.60	4.70	0.90	
20	ST0040	010040	CB0040	P1569-M1-10	ST0030	22.00	18.77	6.90	5.60	1.30	-
30	ST0030	010030	CB0030	P1569-M1-10	ST0020	22.00	19.01	7.00	5.60	1.40	-
40	ST0020	010020	CB0020	P1569-M1-10	ST0010	22.00	19.96	7.80	6.10	1.70	-
50	ST0010	010010	CB0010	P1569-M2-17		22.00	8.69	9.50	9.50		
60	ST0045	010045	CB0045	P1569-M1-10	ST0035	22.00	14.80	4.20	3.90	0.30	-
70	ST0035	010035	CB0035	P1569-M1-10	ST0025	22.00	17.31	5.60	4.80	0.80	-
80	ST0025	010025	CB0025	P1569-M1-10	ST0015	22.00	18.47	6.90	5.00	1.90	-
90	ST0015	010015	CB0015	P1569-M1-10	ST0005	22.00	21.27	9.10	6.10	3.00	
100	ST0005	010005	CB0005	P1569-M2-17		22.00	9.75	10.70	10.70		_
											-
<		1	1	1	1				1 1	>	
			Re <u>S</u> o	rt Cop <u>v</u>	P <u>r</u> int	<u>D</u> elete	<u>A</u> dd	MB	<u>U</u> pdat	e <u>O</u> K	

Individual street section hydraulic analysis results are provided below:

(1) Street Section ID: "ST00050"

Street Drainage Network Model - MB: (01					
List		Details				
[ID]	Street	Design Discharge				
Major Basin ID 01 🔎	Slope (ft/ft) 0.0034	RP (yrs) 10 🎾 All RP				
Street Section ID ST0050	Manning's n 0.016	Sub Basin (cfs) 5.60				
Sub Basin ID 010050 🔎	Cross Slope (ft/ft) 0.0200	From Bypass (cfs) 0.00				
Bypass To Street ST0040 🔎	Allowable Spread (ft) 22.00	Total Q (cfs) 5.60				
Sort 10 🖨	Spread (ft) 16.56	Custom Q 🗌 Uncheck for RP				
✓ Inlet	Depth x Velocity 0.83					
Inlet	Curb and Gutter	Inlet Interception				
ID CB0050	Gutter Width (ft) 1.42	100% Capture (ft) 20.44				
Grade On Grade 🔎	Gutter Depression (in) 1.00	Efficiency (E) 0.84				
Spec P1569-M1-10 🔎	Curb Height (in) 5	Q Intercepted (cfs) 4.69				
Type Curb Opening	Inlet Depression (in) 2.00	Q Bypassed (cfs) 0.91				
Capacity Factor(s)	Depth at Curb (ft) 0.41	Comments				
Curb Opening 0.80 Custom	Average Velocity (fps) 2.00	^				
	Flow Ratio (Eo) 0.25					
		· · · ·				
<mark>. ∲Info</mark> Re <u>S</u> ort	Copy P <u>r</u> int <u>D</u> elete	Add MB Update OK				

💀 Street Drainage Network Model - MB: 01 - O × Details List ID Street **Design Discharge** 10 🔎 All RP Major Basin ID 01 P Slope (ft/ft) 0.0027 RP (yrs) Street Section ID ST0040 Manning's n 0.016 Sub Basin (cfs) 6.00 Sub Basin ID 010040 Cross Slope (ft/ft) 0.0200 From Bypass (cfs) 0.91 Bypass To Street ST0030 Allowable Spread (ft) 22.00 Total Q (cfs) 6.91 \mathcal{P} Sort Spread (ft) 20 ≑ 18.78 Custom Q Uncheck for RP Depth x Velocity 0.88 ✓ Inlet Inlet Curb and Gutter Inlet Interception ID CB0040 Gutter Width (ft) 1.42 100% Capture (ft) 21.80 Gutter Depression (in) 1.00 Efficiency (E) 0.80 Grade On Grade Spec P1569-M1-10 Curb Height (in) 5 Q Intercepted (cfs) 5.56 Inlet Depression (in) Type Curb Opening 2.00 Q Bypassed (cfs) 1.35 Depth at Curb (ft) 0.46 Comments Capacity Factor(s) Average Velocity (fps) 1.93 Δ Curb Opening 0.80 Custom Flow Ratio (Eo) 0.22 Info ReSort Сору Print. Delete Add MB Update <u>0</u>K

(2) Street Section ID: "ST00040"

(3) Street Section ID: "ST00030"

🚽 Street Drainage N	Network Model - MB: 0)1			- • ×		
	<u>L</u> ist			De <u>t</u> ails			
_ ID		Street		🗌 🛛 Design Discharge			
Major Basin II	D 01 🔎	Slope (ft/ft)	0.0025	RP (yrs)	10 🔎 All RP		
Street Section II	D ST0020	Manning's n	0.016	Sub Basin (cfs)	6.40		
Sub Basin II	D 010020 🔎	Cross Slope (ft/ft)	0.0200	From Bypass (cfs)	1.39		
Bypass To Stree	et ST0010 🔎	Allowable Spread (ft)	22.00	Total Q (cfs)	7.79		
So	rt 40 ≑	Spread (ft)	19.95	Custom Q	Uncheck for RP		
	Inlet	Depth x Velocity	0.93				
Inlet		Curb and Gutter		Inlet Interception			
ID C	B0020	Gutter Width (ft)	1.42	100% Capture (ft)	22.88		
Grade O	n Grade 🔊	Gutter Depression (in)	1.00	Efficiency (E)	0.78		
Spec P	1569-M1-10 🔎	Curb Height (in)	5	Q Intercepted (cfs)	6.07		
Type C	urb Opening	Inlet Depression (in)	2.00	Q Bypassed (cfs)	1.72		
Capacity Facto	r(s)	Depth at Curb (ft)	0.48	Comments			
Curb Opening 0		Average Velocity (fps)	1.93		^		
		Flow Ratio (Eo)	0.21				
					~		
	<mark>lofo</mark> Re <u>S</u> ort	Copy P <u>r</u> int	<u>D</u> elete	<u>A</u> dd MB	Update OK		

(4) Street Section ID: "ST00020"

(5) Street Section ID: "ST00010"

(6) Street Section ID: "ST00045"

(7) Street Section ID: "ST00035"

💀 Street Drainage Network Model - MB: 01 - • × Details <u>L</u>ist ID **Design Discharge** Street Major Basin ID 01 0.0027 10 🔎 All RP ρ Slope (ft/ft) RP (yrs) Street Sction ID ST0025 Manning's n 0.016 Sub Basin (cfs) 6.10 Sub Basin ID 010025 Cross Slope (ft/ft) 0.0200 From Bypass (cfs) 0.78 \mathcal{O} Bypass To Street ST0015 Allowable Spread (ft) 22.00 Total Q (cfs) 6.88 ρ Sort 80 ≑ Spread (ft) 18.45 Custom Q Uncheck for RP Depth x Velocity ✓ Inlet 1.05 Inlet Curb and Gutter Inlet Interception ID CB0025 Gutter Width (ft) 1.42 100% Capture (ft) 25.58 2.00 Efficiency (E) 0.72 Grade On Grade Gutter Depression (in) Spec P1569-M1-10 Curb Height (in) 5 Q Intercepted (cfs) 4.96 Type Curb Opening Inlet Depression (in) 1.00 Q Bypassed (cfs) 1.92 Depth at Curb (ft) 0.54 Comments Capacity Factor(s) Average Velocity (fps) 1.95 ۸ Curb Opening 0.80 Custom Flow Ratio (Eo) 0.25 Info ReSort Сору Print. Delete <u>A</u>dd MB Update <u>0</u>K

(8) Street Section ID: "ST00025"

(10) Street Section ID: "ST00005"

😸 Street Drainage N	letwork Model - MB:	01			
	List			De <u>t</u> ails	
_ ID		Street		Design Discharge	
Major Basin ID	01 🔎	Slope (ft/ft	0.0021	RP (yrs) 10	🔎 All RP
Street Section ID	ST0005	Manning's r	0.016	Sub Basin (cfs) 7.	70
Sub Basin ID	010005 🎾	Cross Slope (ft/ft	0.0200	From Bypass (cfs) 3.(0 <mark>5</mark>
Bypass To Street	t 🔊	Allowable Spread (ft) 22.00	Total Q (cfs) 10.7	75
Sort	t 100 ≑	Spread (ft	9.80	Custom Q 🗌 Uncl	neck for RP
⊡ Ir	nlet	Depth x Velocity	1.23		
Inlet		Curb and Gutter		Inlet Interception	
ID CE	30005	Gutter Width (ft) 1.42		
Grade Su	imp 🔎	Gutter Depression (in) 2.00		
Spec P1	569-M2-17 🔎	Curb Height (in) 5	Q Intercepted (cfs) 10.75	
Type Cu	urb Opening	Inlet Depression (in) 1.00		
Capacity Factor	(s)	Depth at Curb (ft	0.28	Comments	
	Curb Opening 0.80 Custom) 1.96		^
					×
	Info ReSort	Copy P <u>r</u> int	<u>D</u> elete	Add MB Update	<u>о</u> к

4.0 SUMMARY

The summary of the street drainage analysis is provided below. This concludes this tutorial.

			<u>L</u> ist					De <u>t</u> ails			
Loo	k for										
Sort	Street ID	Sub Basin	Inlet ID	Inlet Specification	Bypass To	Allowable Spread (ft)	Spread (ft)	Total Q (cfs)	Intercepted (cfs)	Bypass (cfs)	1
10	ST0050	010050	CB0050	P1569-M1-10	ST0040	22.00	16.56	5.60	4.69	0.91	
20	ST0040	010040	CB0040	P1569-M1-10	ST0030	22.00	18.78	6.91	5.56	1.35	Ē.
30	ST0030	010030	CB0030	P1569-M1-10	ST0020	22.00	19.06	7.05	5.66	1.39	Ē
40	ST0020	010020	CB0020	P1569-M1-10	ST0010	22.00	19.95	7.79	6.07	1.72	Ē .
50	ST0010	010010	CB0010	P1569-M2-17		22.00	8.71	9.52	9.52		Ē
60	ST0045	010045	CB0045	P1569-M1-10	ST0035	22.00	14.80	4.20	3.85	0.35	Ē
70	ST0035	010035	CB0035	P1569-M1-10	ST0025	22.00	17.37	5.65	4.87	0.78	[.
80	ST0025	010025	CB0025	P1569-M1-10	ST0015	22.00	18.45	6.88	4.96	1.92	[
90	ST0015	010015	CB0015	P1569-M1-10	ST0005	22.00	21.29	9.12	6.07	3.05	[
100	ST0005	010005	CB0005	P1569-M2-17		22.00	9.80	10.75	10.75		F
											F
											Ξ,
<	1	1	1	1	1					>	