

DRAINAGE DESIGN MANAGEMENT SYSTEM FOR WINDOWS VERSION 6.0.5

TUTORIAL # 19 ABUTMENT SCOUR ANALYSIS [HEC-18 PROCEDURE]

KVL Consultants, Inc.

ABUTMENT SCOUR ANALYSIS [HEC-18 PROCEDURE]

TABLE OF CONTENTS

_ _ _

_

. .

No.	Se	ction Pag	e
1.0	Intr	oduction	.1
2.0	Abu	Itment Scour For Live-Bed Condition (Wingwall)	.1
	2.1	Step 1 - Establish a New Project and Defaults Set-up	. 2
	2.2	Step 2 - Set up Abutment Scour Basic Data	.4
	2.3	Step 3 - Calculate the Abutment Scour	.7
	2.4	Step 4 - Report and Document the Results	.9
3.0	Abu	Itment Scour For Clear-water Condition (Spill-Through)	.1
	3.1	Step 1 - Establish a New Project and Defaults Set-up	. 1
	3.2	Step 2 - Set up Abutment Scour Basic Data	.4
	3.3	Step 3 - Calculate the Abutment Scour – Grain Size Equation	.7
	3.4	Step 4 - Calculate the Abutment Scour – Shear Stress Equation	.9
	3.5	Step 5 - Report and Document the Results	12

ABUTMENT SCOUR ANALYSIS [HEC-18 PROCEDURE] DATE UPDATED: APRIL 20, 2022 TUTORIAL TIME: 40 MINUTES

1.0 INTRODUCTION

Based on the ratio between the embankment projected length (L) and the floodplain width (B_f), abutment scour can be computed based on two conditions: **Live-Bed Condition** and **Clear-Water Condition**. If the ratio (L/B_f) is greater than or equal to 0.75, the live-bed condition equations will be used. Conversely, if the ratio (L/B_f) is less than 0.75, the clear-water condition equations will be used. It may be pointed out that the abutment scour already includes contraction scour. Abutment scour is a type of local scour and forms part of the total scour depth. When abutment scour is evaluated, no additional contraction scour should be added to the total scour depth.

This tutorial includes the two conditions of Abutment Scour identified as follows:

- Condition A Abutment Scour for Live-Bed Condition (Wingwall)
- Condition B Abutment Scour for Clear-Water Condition (Spill-Through)

2.0 ABUTMENT SCOUR FOR LIVE-BED CONDITION (WINGWALL)

If the L/B_f ratio is greater than or equal 0.75, the live-bed abutment scour equations should be used to evaluate the local scour from abutment structure. The procedure for evaluating Abutment Scour for live-bed conditions, also referred as **Condition A**, is from the HEC-18 Manual of the Federal Highway Administration (2012). The abutment scour in this condition could be evaluated in either of the two types: *Wingwall* or *Spill-Through*.

The following sets of data are used for evaluating the abutment scour under the live-bed condition.

- Embankment and Floodplain Data:
 - Projected length of embankment, *L* (ft): 85.00
 - Width of floodplain, B_f (ft): 100.00

✤ Hydraulic Data:

- Upstream flow depth, *y*₁ (ft): 10.00
- Unit discharge at upstream floodplain, *q*₁ (ft²/s): 57.00
- Unit discharge at constricted opening, q_{2c} (ft²/s): 78.60
- Flow depth prior to scour, Y_o (ft): 9.50

The analysis procedure for evaluating abutment scour for live-bed condition is summarized as follows:

- Step 1: Establish a New River Mechanics Project and Defaults Set-up
- Step 2: Set up Abutment Scour Basic Data
- Step 3: Calculate Abutment Scour
- Step 4: Report and Document the results

2.1 Step 1 - Establish a New Project and Defaults Set-up

(a) Start **DDMSW**. Click the **OK** button to accept the software disclaimer as shown below.

After **DDMSW** is launched, the **SELECT PROJECT** form is automatically opened as shown in the following figure.

<u>L</u> ist		De <u>t</u> ails	Default Table Versions	
Group River Me	chanics	\sim		
Project Group 🔺	ID	Reference	Title	~
HEC-1 Model	00134	KVLEXAMPLE5	HEC-1 Tutorial - Clark Unit Hydrograph	_
HEC-1 Model	00099	KVLEXAMPLE6	HEC-1 Tutorial - S-Graph Unit Hydrograph	_
HEC-1 Model	00023	KVLEXAMPLE9	HEC-1 Tutorial - Custom Storm Event	_
HEC-1 Model	00140	REDFOX2.0		_
Rational Method	00029	KVLEXAMPLE11	FCDMC Hydraulics Manual Design Example 4.6	
Rational Method	00115	KVLEXAMPLE3	Example 3 Rational Method tutorial project	
Rational Method	00100	KVLEXAMPLE7	Rational Method Tutorial	
Rational Method	00137	V605_DESIGNEX46	FCDMC Hydraulics Manual Design Example 4.6	
	00057	ABUTMENT_NCHRP1	Abutment Scour using HEC-18 NCHRP Procedure	
River Mechanics	00058	ABUTMENT_NCHRP2	Abutment Scour using HEC-18 NCHRP Procedure	
River Mechanics	00106	BANKPROTECTIONFCD	River Mechanics Example - Bank Protection	
River Mechanics	00109	BRIDGEPIERFCD	River Mechanics Example - Bridge Pier	
River Mechanics	00056	GUIDEBANK_NCHRP	Guide Bank Scour using HEC-18 NCHRP Procedure	
River Mechanics	00055	GUIDEBANK_NCHRP2	Guide Bank Scour using HEC-18 NCHRP Procedure	
River Mechanics	00112	LATEROSIONEXAMPLE	Lateral Erosion Example	
River Mechanics	00111	LAUNCHABLERIPRAP	River Mechanics Example - Launchable RipRap	~
<				>

- (b) Click the Add button on the SELECT PROJECT form to start a new project (File → New Project → Add).
- (c) Check the *River Mechanics* checkbox, then click the *OK* button to exit the **New Project Options** dialog box.
- (d) On the SELECT PROJECT form, enter 'V605_ABUTMENT_NCHRP1' into the Reference textbox. This is the name of the new project. Users can choose any name for the Reference textbox as long as it does not already exist in the current DDMSW project database.
- (e) Type into the *Title* textbox a brief descriptive title for this project (*Optional*) (e.g., 'Abutment Scour using HEC-18 NCHRP Procedure').
- (f) Type into the *Location* textbox the location of this project (*Optional*) (e.g., 'Maricopa County, Arizona')
- (g) Type into the **Agency** textbox the agency or company name (Optional) (e.g., 'Flood Control District of Maricopa County').
- (h) Check *River Mechanics Only* checkbox.
- (i) Type a detailed description of this project into the comment area under the **Project Reference** frame (Optional) (e.g., 'This is a tutorial project for evaluating Abutment Scour using HEC-18 NCHRP Procedure').
- (j) Set the *Modification Date* to today's date by clicking on the Calendar icon.
- (k) Click the *Save* button to save the entered data.

Select Projec	t Edit							
63	<u>L</u> ist	De <u>t</u> a	ails		Default	Table Version	s	
r Project R	Reference				r Project Defa	ults		
Project ID		Reference V605_ABUT	MENT_NCHRP1					
Title	Abutment Scour	using HEC-18 NCHRP I	Procedure		Soils	FCDMC		$\tilde{\rho}$
Location	Maricopa County	r, Arizona			Land Use	FCDMC		$\tilde{\rho}$
Agency	Flood Control Di	strict of Maricopa County	1					
	☐ Hydrology and ☑ River Mechani							
NCHRP Pr	ocedure.	valuating Abutment Scou	Ir using HEC-18	^				
Modification	Date 03/29/2022	2	Save Can	cel	P <u>r</u> int <u>D</u> el	ete <u>A</u> dd	<u>0</u> K	

(I) Click the **OK** button on the **SELECT PROJECT** form to exit.

Note: The **Project ID** 00141 in the above figure is the unique database record identifier for the project, which is automatically generated by the program when a new project is created. Each time a new project is created, a **Project ID** is assigned by the program. The **Project ID** assigned to your project will not necessary be the same as the **Project ID** shown in the above figure

2.2 Step 2 - Set up Abutment Scour Basic Data

(a) From the menu bar of the main application window, click *River Mechanics* → *Scour*, to open the TOTAL SCOUR form.

🛃 Flo	od Co	ontrol District of Ma	laricopa County Version: 6.0.5 - V605_ABUTMENT_NCHRP1 📃 🔳 📧	
File	Edit	River Mechanics	Project Defaults Help	
		Scour Thalweg Eleval Riprap Launchable Rip Lateral Erosion Sediment Yield Cross Section I Cross Section I Import Cross S	iprap n d Hydraulics	
		<u>M</u> anning's Cal		
Model s	cour			

(b) On the **TOTAL SCOUR** form, click the **Add** button at the bottom of the form to activate the necessary data entry fields.

1		ĩ	Ĩ.	1	1		Î.	1	
List	<u>T</u> otal	Long T <u>e</u> rm	<u>G</u> enera	Lo	al <u>E</u>	edform	Low Flo	w Pier Ir	nfluence
ID _		Cross Section	Long	Term Ge	neral Lo		form Ber	nd Low Flow	Total
*		ID	So	our So	cour Sc	our Sc	our Sco	ur Scour	Scour
									·
		Help		Print	Delete	<u>A</u> dd	MB	Update	<u>0</u> K

(c) Type "ABUTNO1" into the **ID** textbox (this **ID** is for Abutment No.1).

(d) Check the *Local* check box only.

Total Scour - MB: 01 - ID:	Add			
<u>L</u> ist <u>T</u> otal	Long Term <u>G</u> eneral Loc	al <u>B</u> edform	Low Flow	Pier Influence
ID Major Basin ID 01 ID ABU	TN01			
Scour Depth	Custom			
	<u>e Calc FS Value Custom M</u>	ethod		
Long Term				
General				
Local 🗹	1.3			
Bedform				
Low Flow				
Headcut	_			
Tailcut				<u>^ </u>
Total (ft)				
Pier Influence				J
	Save Cancel Print	<u>D</u> elete <u>A</u> dd	MB <u>U</u> pda	ate <u>O</u> K

- (e) Click the browse button in the **Method** column across the **Local** checkbox to access and select specific local scour method for the project.
- (f) Select "Abutments (HEC 18 2012)" from the **Select Метнор** dialog box, then click **OK** to exit.

elect Method	
Piers	
Abutments	
Abutments (HEC 18 - 2012)	
Culvert Outlet	
Guide Banks	
Guide Banks (HEC 18 - 2012)	
Grade Control or Drop Structure - Schokli	itsch
Low Head Stilling Basin - Veronese	
Stilling Basin/End of Apron - Zimmerman	/Maniak
	OK Cancel

(g) Click the *Save* button to save the entered data. The **TOTAL SCOUR** form should look like the figure provided below.

Total Scour	- MB: 01 - I	D: ABl	JTN01										
<u>L</u> ist	<u>T</u> otal		Long T <u>e</u> r	m	<u>G</u> ener	al	L	ocal	<u>B</u> edfor	m	Low Flow	Pie	er Influence
ID Majo	r Basin ID ID	01 ABUT	N01										
Scour	Depth					Custo	m						
			Calc	<u>FS</u>	<u>Value</u>	Calc		Method					
	Long Term												
	Local	_	0.00	1.3	0.00			Abutme	ents (HEC 1	18 - 201	12)		
	Bedform												
	Low Flow												
	Headcut												
	Tailcut												^
	Total (ft)												
Pie	r Influence												
													×
			2	Help		P	<u>r</u> int	. <u>D</u> e	elete	<u>A</u> dd	MB	<u>U</u> pdate	<u>0</u> K

2. 3 Step 3 - Calculate the Abutment Scour

- (a) On the **TOTAL SCOUR** form, select the *Local* tab
- (b) Enter "85" into the **Projected Length of Embankment, L (ft)** textbox.
- (c) Enter "100" into the **Width of Floodplain**, $B_f(ft)$ textbox.
- (d) Click the browse D button beside the **Abutment Condition for Amplification Factor** to select the abutment type. Choose "Wingwall" and click **OK** to exit the **Abutment Condition** window.

Ab	outment Condition	
	Spill Through	
	Wingwall	
	<u>O</u> K <u>C</u> ancel	.:
		- 111

Note that the **Abutment Scour Condition** is automatically set to A since the evaluated L/B_f ratio is 0.85, which is greater than the threshold value of 0.75. This classifies the problem to be under **Condition A** or a **Live-Bed Condition**.

- (e) Click the **Save** button to save the entered data.
- (f) Enter "10" into the **Upstream Flow Depth, y₁ (ft)** textbox.
- (g) Enter "57" into the **Upstream Unit Discharge**, q1 (sq ft/sec) textbox.
- (h) Enter "78.6" into the Unit Discharge in the Constricted Opening, q_{2c} (sq ft/sec) textbox.
- (i) Enter "9.5" into the *Flow Depth Prior to Scour, Y_o (ft)* textbox.
- (j) Click the *Save* button to save the entered data.
- (k) Click the *Update* button to update past analysis results if they exist or to initiate the evaluation of the Abutment Scour for the Live-Bed Condition.
- (I) Select "*This Record*" from the **SELECTION OPTION** dialog box, then click **OK** to exit. On the **CALCULATE LOCAL SCOUR** dialog box, click **Yes** to continue.

Sele	ect Option	
	Option 🔺	
	This Record	
	This Major Basin	
	All	
	▼	
	OK <u>C</u> ancel	
		лî

After the update the *Local* tab form should look like the figure provided below.

Total Scour	- MB: 01 - ID: ABU	JTN01
List	<u>T</u> otal	Long Term General Local Bedform Low Flow Pier Influence
		s (HEC 18 - 2012)
Project	ted Length of Abut Width of Floods	
	Abutment Scour	
	Condition A	
		Upstream Flow Depth, y1 (ft) 10.00
		Upstream Unit Discharge, q1 (sq fl/sec) 57.00
	Unit Discl	harge in the Constricted Opening, q2c (sq ft/sec) 78.60
	Flow De	epth Including Live-Bed Contraction Scour, Yc (ft) 13.17
		Amplification Factor for Live-Bed Conditions, aa 1.719
	Maximum Flow	Depth Resulting from Abutment Scour, Ymax (ft) 22.64
		Flow Depth Prior to Scour, Yo (ft) 9.50
		Abutment Scour Depth, Ys (ft) 13.14
		Help Print Delete Add MB Update OK

2.4 Step 4 - Report and Document the Results

In this section, procedures will be given on how to view, print, and export the calculation results from the abutment scour analysis.

(a) To view the results on the screen, click the *Print …* button on the *Local* tab of TOTAL SCOUR – MB: 01 – ID: ABUTNO1 form. A report will be generated as shown in the following figure.

Page 1 Pro	SCOUR - ABUTMENTS HEC-18, CONDITION A ect Reference: V605_ABUTMENT_NCHRP1	3/30/2
ID: ABUTN01		
Projected Length of Abutment, L (ft)	85.00	
Width of Floodplain, Bf (ft)	100	
butment Scour Condition	A	
Select Equation Based On:	Grain Size	
Upstream Flow Depth, y1 (ft)	10.00	
Upstream Unit Discharge, q1 (sq ft/sec)	57.00	
Unit Discharge in the Constricted Opening, q2c (sq ft/sec)	78.60	
Flow Depth Including Live-Bed Contraction Scour, Yc (ft)	13.17	
Amplification Factor forLive-Bed Conditions, aa	1.72	
Maximum Flow Depth Resulting from Abutment Scour, Ymax (ft)	22.64	
Flow Depth Prior to Scour, Yo (ft)	9.50	
Scour depth, ys (ft)	13.14	

- (b) To print the results, click the printer symbol (B).
- (c) To export the results to PDF format or to other formats, click the export symbol (🚵)

This concludes the first tutorial for **Abutment Scour under Live-Bed Condition** (or **Condition A**).

3.0 ABUTMENT SCOUR FOR CLEAR-WATER CONDITION (SPILL-THROUGH)

If the L/B_f ratio is less than 0.75, the clear-water abutment scour equations should be used. The clear-water condition is also called **Condition B** in the HEC-18 Manual of the Federal Highway Administration (2012). Abutment scour can be computed for either of two options: *Wingwall* or *Spill-Through*.

The data sets provided below are for evaluating Abutment Scour (Spill-Through Option).

Embankment and Floodplain Data:

	 Projected length of embankment, L (ft): 	65.00
	• Width of floodplain, <i>B</i> _f (ft):	100.00
*	Hydraulic and Sediment Data:	
	 Unit discharge at upstream floodplain, q_f (ft²/s): 	5.70
	 Unit discharge at constricted opening, <i>q</i>_{2f} (ft²/s): 	10.10
	 Particle size with 50 percent finer, D₅₀ (ft): 	0.0010
	 Manning's n of floodplain under the bridge: 	0.025
	 Critical shear stress for floodplain material: 	0.04
	• Flow depth prior to scour, <i>Y</i> _o (ft):	3.50

The analysis procedure for evaluating Abutment Scour for clear-water condition is summarized as follows:

- Step 1: Establish a New River Mechanics Project and Defaults Set-up
- Step 2: Set up Abutment Scour Basic Data
- Step 3: Calculate Abutment Scour Grain Size Equation
- Step 4: Calculate Abutment Scour Shear Stress Equation
- Step 5: Report and Document the results

3.1 Step 1 - Establish a New Project and Defaults Set-up

(a) Start **DDMSW**. Click the **OK** button to accept the software disclaimer as shown below.

After **DDMSW** is launched, the **SELECT PROJECT** form is automatically opened as shown in the following figure.

List Group River Me	Click	Details to navigate all records	Default Table Versions	
Project Group 🔺	ID	Reference	Title	^
River Mechanics	00055	GUIDEBANK_NCHRP2	Guide Bank Scour using HEC-18 NCHRP Procedure	-
River Mechanics	00112	LATEROSIONEXAMPLE	Lateral Erosion Example	-
River Mechanics	00111	LAUNCHABLERIPRAP	River Mechanics Example - Launchable RipRap	-
River Mechanics	00117	MODELTHALWEG	Sedimentation Model Examples	
River Mechanics	00054	PIER_INFLUENCE	Pier Influence Zone calculation using HEC-18 Procedure	
River Mechanics	00053	PRESSURE_SCOUR	Pressure Flow Scour using HEC-18 Procedure	
River Mechanics	00107	PROJECTXSECTIONS	River Mechanics Cross Sections	
River Mechanics	00110	RIPRAPSIZINGFCD	River Mechanics Example - Riprap Sizing	
River Mechanics	00081	SCOURTUTORIAL	River Mechanics Example	
River Mechanics	00108	SEDIMENTYIELDFCD	River Mechanics Example - Sediment Yield	
River Mechanics	00125	SEDMODELS	Import Sediment Transport Model Long Term Scour	
River Mechanics	00136	T15_LAUNCHABLERR	Tutorial #15 - Launchable Riprap Analysis	
River Mechanics	00141	V605_ABUTMENT_NCHRP1	Abutment Scour using HEC-18 NCHRP Procedure	
Street Drainage	00105	KVLEXAMPLE12	Street Drainage Example	_
Street Drainage	00101	KVLEXAMPLE8	Street Drainage Examples	_
<			>	~

- (b) Click the Add button on the SELECT PROJECT form to start a new project. Alternatively, one can add/create a new project by executing File → New Project → Add.
- (c) Select the *River Mechanics* checkbox, then click the *OK* button to close the **New Project Options** dialog box.
- (d) On the SELECT PROJECT form, enter "V605_ABUTMENT_NCHRP2" into the Reference textbox. This is the name of the new project. Users can choose any name to be entered into the Reference textbox as long as it does not exist already in the current DDMSW project database.
- (e) Type into the *Title* textbox a brief descriptive title for this project. (Optional) (e.g., 'Abutment Scour using HEC-18 NCHRP Procedure')
- (f) Type into the *Location* textbox the location of this project. (Optional) (e.g., 'Maricopa County, Arizona').
- (g) Type into the **Agency** textbox the agency or company name. (Optional) (e.g., 'Flood Control District of Maricopa County')
- (h) Check *River Mechanics Only* checkbox for this project.
- (i) Type a detailed description of this project into the comment area under the **Project Reference** frame. (Optional) (e.g., 'This is a tutorial project for evaluating Abutment Scour (Clear-Water Condition) using HEC-18 NCHRP Procedure')
- (j) Set the *Modification Date* using today's date by clicking on the Calendar icon.
- (k) Click the *Save* button to save the entered data. The figure provided below shows what the form should look like.

Select Proje	ct	ß					
	<u>L</u> ist		De <u>t</u> ails		Default	Table Versions	
Project	Reference				Project Defa	ults	
Project ID	00142	Reference	V605_ABUTMENT_NCH	IRP2			
Title	Abutment Scour	using HEC	-18 NCHRP Procedure		Soils	FCDMC	\sim
Location	Maricopa Count	y, Arizona			Land Use	FCDMC	\sim
Agency	Flood Control D	istrict of Ma	ricopa County				
	Hydrology and	Hydraulics	Only				
	River Mechan	ics Only					
	utorial project for e) using HEC-18 N		butment Scour (Clear-Wa edure	ter ^			
Condition	, using the ofform		courc				
				~			
Modification	Date 03/30/202	2	Update Project Defaults	<i>.</i> €§ <u>I</u> nfo	P <u>r</u> int <u>D</u> el	ete <u>A</u> dd	<u>0</u> K

(I) Click the **OK** button to exit / close the **SELECT PROJECT** form.

Note: The **Project ID** "00142" in the above figure is the unique database record identifier for the project, which is automatically generated by the program when a new project is created. Each time a new project is created, a **Project ID** is assigned by the program. The **Project ID** assigned to your project will not necessary be the same as the **Project ID** shown in the above figure.

3.2 Step 2 - Set up Abutment Scour Basic Data

(a) From the menu bar of the main application window, click *River Mechanics* → *Scour*, to open the TOTAL SCOUR form.

Flood C	ontrol District of Maricopa County Version: 6.0.5 - V605_ABUTMENT	_NCHRP2
File Edit	River Mechanics Project Defaults Help	
	Scolor Thalweg Elevation Comparison	
	<u>R</u> iprap Launchable Riprap	
	La <u>t</u> eral Erosion	
	<u>S</u> ediment Yield ►	
	<u>C</u> ross Section Hydraulics Cross Section <u>G</u> eometry	
	Import Cross Sections from Another <u>P</u> roject Import Cross Sections from a <u>C</u> SV File	
	Manning's Calculator	

(b) On the **TOTAL SCOUR** form, click the **Add** button to activate the necessary data entry fields for the new project.

al Scour - 🖓B:	01 - ID:						
List <u>T</u>	otal Long T <u>e</u> rm	<u>G</u> eneral	L <u>o</u> cal	<u>B</u> edform	Low Flow	Pier In	fluence
ID 🔺	Cross Section ID	Long Term Scour	General Scour	Local Bedfo Scour Sco		Low Flow Scour	Total Scour
		1			1	1 1	
	Help	Info Pr	jint <u>D</u> ele	te <u>A</u> dd	MB	<u>U</u> pdate	<u>0</u> K

- (c) Enter "*ABUTNO2*" into the *ID* textbox (this *ID* identifies that it is for Abutment No.2).
- (d) Check the *Local* checkbox.

(e) Click the browse button will under the **Method** column across the **Local** checkbox to open the local scour method select menu.

Select Method	
	1
Piers	
Abutments	
Abutments (HEC 18 - 2012)	
Culvert Outlet	
Guide Banks	
Guide Banks (HEC 18 - 2012)	
Grade Control or Drop Structure - Schoklitsch	
Low Head Stilling Basin - Veronese	
Stilling Basin/End of Apron - Zimmerman/Maniak	
<u>O</u> K <u>C</u> ancel	
	1.13

- (f) Select the '*Abutments (HEC 18 2012)*' from the **Select MetнoD** dialog box, then click **OK** to close.
- (g) Back to the **TOTAL SCOUR MB: 01 ID: ABUTNO2** form, click the *Save* button to save the entered data.

otal Scour MB: 01 - ID: ABUTNO2
List Total Long Term General Local Bedform Low Flow Pier Influence
ID Major Basin ID 01 ID ABUTNO2
Scour Depth
Include Calc FS Value Calc FS Method
General
Local 2 0.00 1.3 0.00 C Abutments (HEC 18 - 2012)
Bedform
Low Flow
Headcut
Tailcut
Total (ft)
Pier Influence
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Help Print Delete Add MB Update OK

3.3 Step 3 - Calculate the Abutment Scour – Grain Size Equation

(a) Click the *Local* tab to open the form for entering relevant data for evaluating Abutment Scour depth.

Total Score	- MB: 01 - ID:	ABUTNO2						
<u>L</u> ist	Total	Long T <u>e</u> rm	<u>G</u> eneral	L <u>o</u> cal	<u>B</u> edform	Low Flow	Pier Infl	uence
	ted Length of Width of F	e ters (HEC 18 - 2 Abutment, L (ft) Ioodplain, Bf (ft) Scour Condition	2012) A	Abutment Cor	ndition for Ampl	ification Factor	Spill Through	
	Conditio	n A						
	Flo	Discharge in the w Depth Including Amplificatio	ream Unit Disc Constricted Ope Dive-Bed Cont In Factor for Live Iting from Abuth Flow Depth	m Flow Depth, y1 (harge, q1 (sq ft/se ening, q2c (sq ft/se raction Scour, Yc (-Bed Conditions, nent Scour, Ymax Prior to Scour, Yo : Scour Depth, Ys	aa			
		⊘ He	lp Ø <u>I</u> nfo	P <u>r</u> int <u>D</u> e	elete <u>A</u> dd	MB	<u>U</u> pdate	<u>0</u> K

- (b) Enter "65" into the **Projected Length of Embankment, L (ft)** textbox.
- (c) Enter "100" into the Width of Floodplain, B_f (ft) textbox.
- (d) Click the browse Del button beside the **Abutment Condition for Amplification Factor** textbox to select the Abutment type. Choose "Spill Through" and click **OK** to exit the **Abutment Condition** dialog box.

Abutment Condition	
Spill Through	
Wingwall	
OK Cancel	
	1.11

(e) Click the browse we button on the right side of the **Select Equation Based On** textbox to select which equation to use between "Grain Size" or "Shear Stress". Choose "Grain Size", then click **OK** to exit the **EQUATION BASED ON** dialog box.

Eq	uation based on	
	Grain Size	
	Shear Stress	
	<u>O</u> K <u>C</u> ancel	

- (f) Back on the *Local* tab form, click the *Save* button to save the entered data.
- (g) Enter "5.7" into the **Upstream Unit Discharge**, **q**_f (sq ft/sec) textbox.
- (h) Enter "10.1" into the Unit Discharge in the Constricted Opening, q_{2f} (sq ft/sec) textbox.
- (i) Enter "0.0010" into the **Particle Size with 50 Percent Finer**, **D**₅₀ (ft) textbox.
- (j) Enter "3.5" into the *Flow Depth Prior to Scour,* Y_o (*ft*) textbox.
- (k) Click the *Save* button to save the entered data.
- (I) Click the **Update** button to update the analysis.
- (m) Select "*This Record*" from the **SELECTION OPTION** dialog box, then click **Yes** to continue.

After the update, the form should now look like the figure provided below.

List	<u>T</u> otal	Long T <u>e</u> rm	<u>G</u> eneral	Local	<u>B</u> edform	Low Flow	Pier In	fluence
Abutm	ent Parame	ters (HEC 18 -	2012)					
Project	ed Length of A	Abutment, L (ft)	65.00	Abutment Conditi	on for Amplificati	ion Factor	Spill Through	\sim
	Width of Flo	oodplain, Bf (ft)	100	s	elect Equation E	Based On:	Grain Size	\sim
	Abutment S	cour Condition	В					
	Condition	B - Grain Siz	.e					
		Upstream Flo	odplain Unit Disc	charge, qf (sq fl/sec)	5.70			
Unit Discharge in the C			Constricted Ope	ening, q2f (sq fl/sec)	10.10 11.170			
		Particl	e Size with 50 Pe	ercent Finer, D50 (ft)	0.0010			
	Flow D	epth Including C	Clear-water Contr	raction Scour, Yc (ft)	6.60			
		Amplification F	Factor for Clear-w	vater Conditions, ab	2.111			
	Maximum F	low Depth Res	ulting from Abutm	nent Scour, Ymax (ft)	13.94			
			Flow Depth	Prior to Scour, Yo (ft)	3.50			
			Abutment	Scour Depth, Ys (ft)	10.44			

3.4 Step 4 - Calculate the Abutment Scour – Shear Stress Equation

An alternative option to evaluate the Abutment Scour is to use equations for the *"Shear Stress"* option.

- (a) On the same *Local* tab form, keep the same data that were employed for the '*Grain Size*' option.
- (b) Click the browse we button beside the **Select Equation Based On** textbox and select *"Shear Stress"*. Click **OK** to exit the **EQUATION BASED ON** dialog box.

(c) Click the *Save* button to accept the changes made on the data.

Note that the selection of "Shear Stress" for the Abutment Scour Condition B analysis has transformed the Local tab form as shown. Now the form has added three more input data fields. They are Manning's n of the Floodplain Material Under the Bridge, Critical Shear Stress for the Floodplain Material, t_c (Ib/sq ft), and Unit Weight of Water (Ib/cu ft).

<u>L</u> ist	<u>T</u> otal	Long T <u>e</u> rm	-∂ <u>G</u> eneral	L <u>o</u> cal	<u>B</u> e	dform	Low Flov	v Pie	er Influence
Abutm	ent Parame	ters (HEC 18 - 2	012)						
Project	ted Length of/	Abutment, L (ft)	65.00	Abutment C	ondition	for Amplificati	on Factor	Spill Thro	ugh 🔎
	Width of Flo	oodplain, Bf (ft)	100		Sele	ect Equation B	ased On:	Shear Stre	ess 🔎
	Abutment S	cour Condition	В						
	⊂ Condition	B - Shear Stre	ss						
		Upstream Floor	dplain Unit Discl	harge, qf (sq ft	/sec)	5.70			
	Unit [Discharge in the (Constricted Oper	ning, q2f (sq ft	/sec)	10.10			
	Man	ning n of the Floo	dplain Material (Under the Brid	ge, n				
	Critical	I Shear Stress for	the Floodplain I	Material, tc (Ib/	sqft)				
			Unit Weig	ht of Water (Ib/	cu ft)	62.40			
					Ku	1.486			
	Flow Depth Including Clear-water Contraction Scour, Yc (ft)					6.60			
	Amplification Factor for Clear-water Conditions, ab					2.111			
	Maximum F	Flow Depth Resul	-			13.94			
				rior to Scour, Y		3.50			
			Abutment	Scour Depth, Y	's (ft)	10.44			
		Hel	p 🤣Info	Print	Delete	Add	MB	Update	<u>0</u> K

(d) Enter "0.025" into the Manning n of the Floodplain Material Under the Bridge, n textbox.

- (e) Enter "0.04" into the Critical Shear Stress for the Floodplain Material, t_c (*lb/sq ft*) textbox.
- (f) Enter *"62.4"* into the *Unit Weight of Water (lb/cu ft)* textbox.

Keep the other input data to be the same as were used in the *"Grain Size"* option. The completed form should now look as the screenshot provided below:

Total Scour - MB: 01 - ID: ABUTNO2 Edit	
Like Total Long Term General Local	Bedform Low Flow Pier Influence
Abutment Parameters (HEC 18 - 2012)	
Projected Length of Abutment, L (ft) 65.00 Abutment Condi	ition for Amplification Factor Spill Through 🔎
Width of Floodplain, Bf (ft) 100	Select Equation Based On: Shear Stress 🔎
Abutment Scour Condition B	
Condition B - Shear Stress	
Upstream Floodplain Unit Discharge, qf (sq ft/sec)	5.70
Unit Discharge in the Constricted Opening, q2f (sq ft/sec)) 10.10
Manning n of the Floodplain Material Under the Bridge, n	0.025
Critical Shear Stress for the Floodplain Material, tc (lb/sq ft)	0.04
Unit Weight of Water (Ib/cu ft)) 62.40
Ku	1.486
Flow Depth Including Clear-water Contraction Scour, Yc (ft)	6.60
Amplification Factor for Clear-water Conditions, ab	2.111
Maximum Flow Depth Resulting from Abutment Scour, Ymax (ft)	13.94
Flow Depth Prior to Scour, Yo (ft)	3.50
Abutment Scour Depth, Ys (ft)) 10.44
Save Cancel Print Dele	te <u>A</u> dd MB <u>U</u> pdate <u>O</u> K

- (g) Click the *Save* button to accept all the changes made on the form.
- (h) Click the *Update* button to update the Abutment scour analysis results.
- (i) Select "*This Record*" from the **SELECTION OPTION** dialog box, then click **Yes** to continue.

Sele	ect Option	,
	Option 🔺]
	This Record	
	This Major Basin	
	All	
	-	
	OK Cancel	
		i

After the update, the evaluated Abutment Scour depth for the "Shear Stress" option (*i.e.*, 7.29) appears to be less than the one evaluated for the "Grain Size" option (*i.e.*, 10.44).

Total Scour - MB: 01 - ID: ABUTNO2	
List Total Long Term General Local	Bedform Low Flow Pier Influence
Width of Floodplain, Bf (ft) 100	tion for Amplification Factor Spill Through Select Equation Based On: Shear Stress
Abutment Scour Condition B	
Condition B - Shear Stress	
Upstream Floodplain Unit Discharge, qf (sq fl/sec)	5.70
Unit Discharge in the Constricted Opening, q2f (sq ft/sec)	10.10
Manning n of the Floodplain Material Under the Bridge, n	0.025
Critical Shear Stress for the Floodplain Material, tc (lb/sq ft)	0.04
Unit Weight of Water (Ib/cu ft)	62.40
Ku	1.486
Flow Depth Including Clear-water Contraction Scour, Yc (ft)	5.11
Amplification Factor for Clear-water Conditions, ab	
Maximum Flow Depth Resulting from Abutment Scour, Ymax (ft)	
Flow Depth Prior to Scour, Yo (ft)	
Abutment Scour Depth, Ys (ft)	7.29
Print Delete	Add MB Update OK

3.5 Step 5 - Report and Document the Results

This section includes procedures how to view, print, and export results from performing Abutment Scour analysis.

(a) To view the analysis results on the screen, click the *Print ...* button on the *Local* Tab of the TOTAL SCOUR – MB: 01 – ID: ABUTNO2 form. As a result, a report is generated as shown below:

	Flood Control District of Maricopa County DALE age Design Anagement System SHEAR STRESS LOCAL SCOURTINENTS HECKS, CONTINN 8 - SHEAR STRESS Project Reference - VOOD, BUT HENT, NCHRP2				
ID: ABUTNO2					
Projected Length of Abutment, L (ft)	65.00				
Width of Floodplain, Bf (ft)	100				
butment Scour Condition	В				
Select Equation Based On:	Shear Stress				
Upstream Floodplain Unit Discharge, of (sq ft/sec)	5.70				
Unit Discharge in the Constricted Opening, q2f (sq ft/sec)	10.10				
Manning n of the Floodplain Material Under the Bridge, n	0.025				
Critical Shear Stress for the Floodplain Material, tc (lb/sq ft)	0.04				
Unit Weight of Water (lb/cu ft)	62.40				
Ku	1.486				
Flow Depth Including Clear-water Contraction Scour, Yc (ft)	5.11				
Amplification Factor for Clear-water Conditions, ab	2.11				
Maximum Flow Depth Resulting from Abutment Scour, Ymax (ft)	10.79				
Flow Depth Prior to Scour, Yo (ft)	3.50				
Scour depth, ys (ft)	7.29				

- (b) To print the results, click the printer symbol (B).
- (c) To export the results to PDF format or to other formats, click the export symbol (🛃)

This concludes this second tutorial for **Abutment Scour under Clear-Water Condition** (Condition B).